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Abstract

This paper extends the Bayesian semiparametric stochastic volatility (SV-DPM)
model of Jensen and Maheu (2010). Instead of using a Dirichlet process mixture (DPM)
to model return innovations, we use an infinite hidden Markov model (IHMM). This
allows for time variation in the return density beyond that attributed to parametric
latent volatility. The new model nests several special cases as well as the SV-DPM.
We also discuss posterior and predictive density simulation methods for the model.
Applied to equity returns, foreign exchange rates, oil price growth and industrial pro-
duction growth, the new model improves density forecasts, compared to the SV-DPM,
a stochastic volatility with Student-t innovations and other fat-tailed volatility models.
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1 Introduction
Changing volatility has become ubiquitous in economic time-series data. Besides high fre-
quency asset returns, conditional heteroskedasticity is even found in lower frequency macroe-
conomic aggregate data (Chan, 2013, 2017; Marcellino et al., 2016; Diebold et al., 2017;
Carriero et al., 2019). Generalized autoregressive conditional heteroskedasticity (GARCH,
Bollerslev, 1986) and stochastic volatility (SV, Taylor, 1982), are popular modelling ap-
proaches used to capture volatility dynamics. However, much less attention has been paid
to modelling unknown return innovation distributions.

Flexible modelling of return innovations coupled with parametric volatility models can
be found in the work of Jensen and Maheu (2010), Delatola and Griffin (2011, 2013), Kalli
et al. (2013) and Liu (2020). Although flexible, these approaches assume that the underlying
innovation distribution is constant over time. Volatility changes from the parametric portion
of the model, but the underlying return distribution is fixed over time.

This paper explores an SV parametric specification, coupled with an infinite hidden
Markov component that governs a mixture of normals. This is a direct extension to Jensen
and Maheu (2010) and replaces the Dirichlet process mixture (DPM) with a Markov mixture
model. The Markov chain allows for the possibility that the weights on the mixture change
over time. In theory this means that the mixture can capture changing conditional skewness,
kurtosis as well as changes in tail dynamics beyond what the SV component can account for.

The infinite hidden Markov model (IHMM) has been fruitfully used in other settings:
GARCH modelling (Dufays, 2016), inflation dynamics (Song, 2014; Jochmann, 2015) short-
term interest rates (Maheu and Yang, 2016), realized covariance models (Jin and Maheu,
2016; Jin et al., 2019), macroeconomic forecasting (Hou, 2017; Yang, 2019) and model com-
bination (Jin et al., 2021).

The IHMM approximates the unknown conditional return distribution that is nonpara-
metrically similar to the DPM. Unlike the DPM model, the mixture weights in the IHMM
are Markovian. The prior on this Markov chain is constructed using two layers of nested
Dirichlet processes called a hierarchical Dirichlet process (Teh et al., 2006). The IHMM can
be seen as a regime-switching model with an infinite number of states. In each period, the
return distribution is approximated by an infinite mixture and the mixture weights depend
on the previous state the system is in. In contrast, the DPM approximates the unknown dis-
tribution with an infinite mixture, but the weights are constant and independent of previous
states.

Due to the unbounded state space, the IHMM can accommodate both structural breaks
and recurrent changes in a unified framework. However, a regime switching model may not

2

Electronic copy available at: https://ssrn.com/abstract=4069359



be able to capture the strong persistence in the volatility dynamics (Ryden et al., 1998).
Our model’s SV component captures this and allows the IHMM component to focus on local
changes in the shape of the unknown distributions.

Our model can also be seen as an extension of Virbickaitė and Lopes (2018) which has
a two-state Markov switching process that affects the conditional mean of the log-volatility,
while the return innovations are nonparametrically modelled. Related work that includes
discrete parameter changes in volatility modelling are Maheu and McCurdy (2000), Calvet
and Fisher (2004), Griffin and Steel (2011) and Bauwens et al. (2014).

Posterior simulation relies on Markov chain Monte Carlo (MCMC) methods. Posterior
simulation for the IHMM component comes from Teh et al. (2006) and Maheu and Yang
(2016); while the latent stochastic volatility is simulated with the random block sampler
of Jensen and Maheu (2010). We apply the model to several different asset classes and
compare it with a number of strong benchmark models, including the SV-DPM from Jensen
and Maheu (2010) and SV model with Student-t innovations. While the SV component
of the model captures movements that display strong persistence in volatility, the variance
component directed from the IHMM portion can be thought of as capturing local changes in
the long-run volatility.

Evaluating the model through predictive likelihood shows that the SV-IHMM is preferred
to all other benchmarks. Predictive density plots indicate that the SV-IHMM tends to
produce distributions with the fattest tails, when necessary.

This paper is organized as follows. Section 2 to 6 illustrate the specification of the
proposed SV-IHMM, along with the sampling algorithm and density forecast computation.
Section 7 describes the details of the return series used to test this model. Section 8 presents
the posterior estimations of the SV-IHMM and three benchmark models. Section 9 further
analyses our model’s out-of-sample performance compared with multiple benchmark models.
Section 10 tests the robustness of the estimates and forecasts under different prior settings
for hyper-parameters. Section 11 concludes. An Appendix details the posterior simulation
methods used for our model.

2 The Model
Our proposed SV-IHMM model includes a parametric SV component, and a Bayesian non-
parametric portion, following an infinite hidden Markov model (IHMM). The IHMM is con-
structed from the hierarchical Dirichlet process (HDP) introduced by Teh et al. (2006). The
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hierarchical representation of the SV-IHMM is

Γ ∼ Stick(η), Πj
iid∼Stick2(α,Γ), j = 1, . . . ,∞, (1a)

st|st−1 ∼ Πst−1 , (1b)
rt|st, ht, θ ∼N(µst , ω

2
st exp(ht)), (1c)

ht|ht−1 ∼N(ϕht−1, σ
2
v), (1d)

θj
iid∼H, j = 1, . . . ,∞, (1e)

for t = 1, . . . , T . θst = {µst , ωst} and θ = {θ1, θ2, ...} is the collection of the state-dependent
parameter vectors that are generated from the base measure H. st ∈ {1, . . . ,∞} is the
state variable that is governed by the first-order Markov chain of infinite dimension with
transition matrix Π. Stick(η) and Stick2(α,Γ) are stick-breaking representations of the
Dirichlet processes (Sethuraman, 1994; Teh et al., 2006). Let Γ = {γ1 . . . , γ∞} then Γ ∼
Stick(η) denotes a discrete distribution with weights generated as

γj = vj

j−1∏
l=1

(1− vl), vj
iid∼Beta(1, η), j = 1, 2, 3..... (2)

Γ serves as a centering distribution with support on the natural numbers. Each row of Π is
drawn as Πj ∼ Stick2(α,Γ). The distribution of Πj has weights generated as

πji = π̂ji

i−1∏
l=1

(1− π̂jl), π̂ji
iid∼Beta

(
αγi, α

(
1−

i∑
l=1

γl

))
, (3)

where πji is an element of Π at the jth row and ith column. πji represents the probability of
moving from parameter θj to parameter θi.

η and α are concentration parameters that govern the likelihood of new states occurring
when the model is applied to a finite dataset. The two DP’s in (1a) are linked by sharing
the same atom θ. This means that each draw of Πj has the same support and facilitates
the construction of an infinite transition matrix that can be used to govern st. Stick(η)

determines the top-level hierarchy and is shared in the second level. The second layer,
Stick2(α,Γ), governs each row of the transition matrix and is centered such that E[Πj] = Γ.
The IHMM nests the Dirichlet process mixture model of Antoniak (1974) when α → 0, and
each row of the transition matrix converges to the same vector Γ.
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The associated stick-breaking representation of the model is

p(rt|θ,Π, st−1, ht) =
∞∑
k=1

πst−1kN(rt;µk, ω
2
k exp(ht)), (4a)

ht = ϕht−1+σvvt, vt ∼ N(0, 1), (4b)

where N(rt;µk, ω
2
k exp(ht)) denotes the normal density function with mean µk, and variance

ω2
k exp(ht) evaluated at rt. πst−1k governs the weight assignments to different normal kernels,

where the weights change accordingly over time via the first-order Markov chain. The model
in (4) becomes the SV-DPM specification of Jensen and Maheu (2010) if the weights are
independent of the previous state, where πjk = πk for all j and k.

As in conventional SV models, the persistence in the volatility dynamics is captured
through the lag term ϕht−1. The SV-IHMM has a second channel for persistence though
the Markov chain which itself allows for persistence in the conditional mean µst , and the
conditional variance component ωst . Since the long-run value of ht is zero when |ϕ| < 1, the
parameter ω2

st effectively controls and allows for local changes in the long-run variance of the
returns. This is seen by rewriting the model as

rt = µst + exp(h
′

t/2)zt (5a)
h

′

t − logω2
st = ϕ(h

′

t−1 − logω2
st−1

) + σvvt, (5b)

where h
′
t = ht+logω2

st . Here the long-run mean of h′
t is logω2

st and remains constant without
any state change. State changes allow for both the conditional mean and the long-run mean
of h′

t to change over time through ω2
st .

3 Benchmark Models
We consider the following benchmark models for comparison. The GARCH-N is defined as:

rt = µ+ σtϵt, ϵt ∼ N(0, 1), σ2
t = β0 + β1(rt−1 − µ)2 + β2σ

2
t−1. (6)

The GARCH-t replaces the normal distribution with a Student-t distribution:

rr = µ+ σtut, ut ∼ t(ν), σ2
t = β0 + β1(rt−1 − µ)2 + β2σ

2
t−1, (7)
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where t(ν) denotes a Student-t distribution with mean 0, scale parameter 1 and degree of
freedom ν. The SV parametric versions, including the SV-N, are defined as:

rt = µ+ exp (ht/2) ϵt, ϵ ∼ N(0, 1), ht = ξ + ϕht−1 + σvvt. (8)

Similarly, SV-t has the following Student-t return innovations:

rt = µ+ exp (ht/2)ut, ut ∼ t(ν), ht = ξ + ϕht−1 + σvvt. (9)

The SV-IHMM nests several models of interest that we can compare our model to. The
first is an IHMM without the SV component. If σv = 0, and ht = 0, ∀t in the SV-IHMM
then we have the IHMM:

Γ ∼ Stick(η), Πj
iid∼Stick2(α,Γ), j = 1, . . . ,∞, (10a)

st|st−1 ∼Πst−1 , (10b)
rt|st, ht, θ ∼N(µst , ω

2
st), (10c)

θj
iid∼H, j = 1, . . . ,∞, (10d)

As mentioned above, the infinite hidden Markov chain nests the DPM as a special case and,
therefore, the SV-IHMM nests the SV-DPM of Jensen and Maheu (2010). The SV-DPM
model is obtained by replacing the first two lines in (1a)–(1b) with

Γ ∼Stick(η), (11a)
st ∼Γ, t = 1, . . . , T. (11b)

Finally, since the SV-IHMM nests the SV-DPM as in Jensen and Maheu (2010), it also nests
the SV-t under certain parameter restrictions and prior assumptions.

4 Priors and Hierarchical Priors
This section defines the priors and hierarchical priors for the SV-IHMM and the benchmark
models. Priors for the infinite Markov transition matrix Π are formed by Stick(η) and
Stick2(α,Γ), which were discussed in previous section. In order to minimize the impact of
the prior, rather than fixing η and α, we follow Fox et al. (2011) and impose the hyper prior:

η ∼ Gamma(2, 8), α ∼ Gamma(2, 8), E(η) = E(α) = 0.25. (12)
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H is the common base measure of the second layer of the DP’s in the model. This prior is
specified as µj ∼ N(b0, B0) and ωj ∼ IG(ν0, s0). Motivated by Song (2014), a hierarchical
prior is used to learn from the data about these prior settings. These are

b0 ∼ N(0, 1), B0 ∼ IW (3, I), v0 ∼ Exp(1), s0 ∼ Gamma(5, 1), (13)

where I is an identity matrix, and B0 ∼ IW (4, I) if the conditional mean is an AR(1) process.
When a new state is introduced to the model, the associated draws of a new µ and ω are
obtained from the informative priors that were influenced by data. This can contribute to
faster learning about new states and, thus, improve the forecasts.1 ϕ ∼ N(0, 1) is truncated
to the stationary region for an AR(1) process and σ2

v ∼ IG(11, 0.01).2

The prior and the hierarchical prior of the IHMM are the same as that of the SV-IHMM.
For the SV-DPM, we keep same priors, hyper-priors and hierarchical priors as in SV-IHMM.
The key difference is that there is only one concentration parameter, η ∼ Gamma(2, 8),
in SV-DPM. Let µ, β0, β1, β2 follow an independent N(0, 1) in GARCH-N and GARCH-t.
Similarly, µ, ξ, ρ follow an independent N(0, 1) and σ2

v ∼ IG(11, 0.01) in both the SV-N and
SV-t.2 The prior for ν in Student-t is uniform: ν ∼ U [2, 50].

5 Posterior Sampling
The sampling scheme for the SV-IHMM consists of two parts. First, we sample the state-
dependent parameters, transition matrix, latent states and the concentration parameters of
the HDP. Second, we sample the log-volatility.

Conditional on the log-volatility, the sampling algorithm for the state-dependent pa-
rameters is similar to that of the IHMM. We use the beam sampler from Van Gael et al.
(2008). This randomly generates the auxiliary variables (slices) that stochastically truncate
the infinitely dimensional transition matrix Π into a finite size so that the forward-filtering
backward-sampling (FFBS, Chib, 1996) can be applied.

We define an auxiliary variable ut > 0 (slice) that is generated by a uniform density as
follows:

p(ut|st, st−1,Π, ) =
1(ut < πst−1,st)

πst−1,st

t = 1, . . . , T, (14)

where 1(·) denotes the indicator function. Augmenting the model with ut gives us the

1Maheu and Yang (2016) documents significant improvements in the density forecast accuracy.
2We apply a very informative prior to separately identify the SV and IHMM components. A prior of

σ2
v ∼ IG(5, 0.25) provides similar forecast results.
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following target density:

p(rt, ut|θ,Π, st−1, ht) =
∞∑
k=1

1(ut > πst−1k)N(rt;µk, ω
2
k exp(ht)). (15a)

Integrating out the slice yields (4a), but given ut there are now a finite number of non-zero
terms 1(ut > πst−1k), that we need to account for. This is easily achieved by defining K to
satisfy maxi∈{1,...,K}{1−

∑K
j=1 πi,j} < mint∈{1,...,T}{ut}.

Now, sampling the states and the state-dependent parameters is done on a finite Markov
switching model. In each iteration, of the posterior sample K will change.

The FFBS within the Beam sampler is applied in the following way:

The prediction step for k = 1, . . . , K calculates as

p(st = k|u1:T ,Π, r1:t−1) ∝
K∑
j=1

1(ut < πj,k)p(st−1 = j|u1:T ,Π, r1:t−1, ht). (16)

The update step for k = 1, . . . , K calculates as

p(st = k|u1:T ,Π, r1:t) ∝ p(st = k|u1:T ,Π, r1:t−1)p(rt|r1:t−1, µk, ωk, ht). (17)

After s1:T are sampled, we update K by excluding the states for which there are no observation
assignment. The slices are drawn from the uniform distribution.

To sample ht, a random length block-move Metropolis-Hastings (MH) sampler of Jensen
and Maheu (2010) is used. The block size of this sampler is randomly drawn from a Poisson
distribution with preset hyperparameter λh, and the expected block size is λh + 1. Once ht

is sampled, θ and σv can be easily sampled via conjugacy. c1:K represents the oracle counts
that helps us sample α and η. Appendix A describes the details of each sampling step. All
of the posterior steps are summarized in the following:

p(u1:T |s1:T ,Π) p(s1:T |Π, u1:T , r1:T , h1:T , θ) p(c1:K |s1:T ,Γ, α)

p(Γ|s1:T , η, α, c1:K) p(Π|s1:T ,Γ, α, c1:K) p(µ1:K , ω1:K |r1:T , s1:T )

p(α, η|s1:T , c1:K) p(h1:T |h1:T , r1:T , θ) p(ϕ|h1:T , σv)

Let Θ = {µ1:K , ω1:K , ϕ, σv, h1:T}. Sampling each of the conditional posterior distributions
provides one iteration of the sampler. After dropping the burn-in draws, the posterior average
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or quantiles of each parameter of interest are computed from N draws. For example,

E(µst |r1:T ) =
1

N

N∑
i=1

µ
(i)

s
(i)
t

for t = 1, . . . , T (19)

is the posterior mean of µst at each point in time.

6 Density Forecasts
The predictive distribution of returns integrates out all of the parameter uncertainty and has
the following generic form:

p(rt+1|r1:t) =
∫

p(rt+1|Θ, r1:t)p(Θ|r1:t)dΘ (20)

where p(rt+1|Θ, r1:t), is the density of rt+1 given the parameter set Θ and the past returns.
p(Θ|r1:t) is the posterior density of Θ, given the data. Any feature of the predictive density,
such as the predictive mean, can be obtained through simulation methods.

A central component in a Bayesian model comparison is the predictive likelihood. This
is obtained for a model by evaluating the predictive density at the realized data point rt+1.
The predictive likelihood measures the accuracy of the density forecasts, with larger values
being better.

To compute the log-predictive likelihood (LPL) for the SV-IHMM, we do the following:
Given the posterior draws from each iteration of the MCMC sampler {µ(i)

st , ω
(i)
st ,Π

(i), s
(i)
t , ϕ

(i)
h , σ

(i)
v , h

(i)
t },

we draw s
(i)
t+1 ∈ {1, . . . , K(i) + 1}, where K(i) is the total number of active states:

1. Simulate the state variable s
(i)
t+1 through Π

(i)
sT , conditional on s

(i)
t .

2. If s(i)t+1 ≤ K(i), then rt+1 is assigned to an existing state, with state-dependent parameter
θst+1 = (µ

(i)
st+1 , ω

(i)
st+1). Otherwise, rt+1 is assigned to a new state, st+1 = K(i) + 1,

where (µ
(i)
st+1 , ω

(i)
st+1) is drawn from the hierarchical prior, µst+1 ∼ N(b0, B0) and ω2

st+1
∼

IG(ν0, s0).

If N is the total number of MCMC draws used for the forecasting inference, then the predictive
likelihood at t+ 1 is computed over all MCMC draws:

p(rt+1|r1:t) ≈
1

N

N∑
i=1

p(rt+1|µ(i)
st+1

, ω(i)2
st+1

exp(h
(i)
t+1)), (21)

where p(rt+1|µ(i)
st+1 , ω

(i)2
st+1 exp(h

(i)
t+1)) denotes the normal density evaluated at rt+1 with mean
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µ
(i)
st+1 and variance ω

(i)2
st+1 exp(h

(i)
t+1). h

(i)
t+1 is obtained by simulating forward a value from the

existing MCMC draw h
(i)
t+1 ∼ N(ϕ(i)h

(i)
t , σ

(i)2
v ).

Equation (21) measures the predictive likelihood of forecast accuracy at period t+1. The
forecast performance over the entire out-of-sample period, t0, . . . , t1 t0 ≤ t1, is determined by
computing the joint predictive likelihood of model MA in the following way:

LPLA = log p(rt0:t1|r1:t0 ,MA) =

t1∑
t=t0

log p(rt|r1:t−1,MA) (22)

Two models, MA and MB, can be compared with a log-predictive Bayes factor (BF)
defined as BFAB = LPLA−LPLB. Positive values favour MA. Values above 5 are regarded
as strong evidence for MA.

The root mean squared forecast error (RMSFE) for MA is computed in a similar way:

RMSFE =

√∑t1
t=t0

(rt − E(rt | r1:t−1,MA))2

t1 − t0 + 1
, (23)

where E(rt|r1:t−1,MA) is the predictive mean for rt given data r1:t−1. For each out-of-sample
period, we re-estimate the model to compute the predictive quantities.

7 Data
Four time series datasets are studied using the SV-IHMM and the benchmark models. These
datasets cover an equity, a commodity, a foreign exchange rate and a macroeconomic indi-
cator. We select Apple Inc. (AAPL) as a large cap equity and use its common stock returns
at daily frequencies, dated from December 15th, 1980 to December 31, 2020, and obtain a
sample size of 10,099, which we retrieved from the CRSP.3 For the foreign exchange rate, we
study the daily exchange rates of the Canadian against the US dollar for the period January
5th, 1971, to December 31, 2020 (12,057 observations), which we obtained from the FRED.4

West Texas Intermediate (WTI) crude oil spot free on board (FOB) prices are selected for our
commodity prices and run from January 2, 1986 to December 31, 2020. There are 8,819 daily
observations and these are downloaded from the U.S. Energy Information Administration.
The U.S. industrial production index is downloaded from FRED and is a monthly measure
of real output. There are 1,222 observations, dating from March, 1919 to December, 2020.
All of the time series are transformed into rates of change by taking the log difference and

3Center for Research in Security Prices.
4Federal Reserve Economic Data, U.S. Federal Reserve Bank of St. Louis.
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scaling it by 100. The data series are labelled AAPL, USD/CAD, Crude Oil and IP Growth,
respectively. Table 1 illustrates some descriptive statistics of the data. AAPL and Crude Oil
have greater volatility and skewness than USD/CAD and IP Growth.

8 Posterior Analysis
Table 2 summarizes the posterior parameter estimates of only the most competitive models:
the SV-IHMM, SV-DPM, SV-t and GARCH-t across the four datasets. The posterior means
and 0.95 density interval estimates are reported. The burn-in MCMC draws are 20,000 and
another N = 20, 000 draws are used for the posterior inferences. In the case of IP Growth,
we include an AR(1) term with a fixed coefficient in the conditional mean and denote it as ρ
in the table. In the nonparametric models ρ is also state dependent along with the intercept.

First, introducing a second dynamic structure on the volatility through ω2
st does not

weaken the volatility persistence of ht. For instance, ϕ is in the range of 0.993 – 0.999 for
all of the models. Second, in the nonparametric components, we find that the SV-IHMM
model uses more active states than the SV-DPM in applications of AAPL and USD/CAD,
whereas it is about the same in application of Crude Oil and IP Growth, as shown in Table 2.
The posterior mean of K is larger and the density interval shift rightward in the SV-IHMM,
compared to the SV-DPM, for AAPL and USD/CAD. This can be seen in Figure 1.

The estimates for the SV-t and the GARCH-t are typical, with a small degree of freedom
in the t-distribution and strong persistence measures of ϕ and β1 + β2 in volatility. The
exception is for the SV-t applied to IP Growth, where there is a larger degree of freedom
parameter. In this case the fat-tails are generated though the log-volatility, which has a much
larger σ2

v than the other data.
Figure 2 shows the posterior mean of the variance components for the SV-IHMM model

that is applied to AAPL for the period 2012 to 2020. As discussed earlier, the ht process
by construction captures the smooth changes in the volatility. Deviations from this are
controlled by ωst , which captures the local unconditional mean of the log-volatility, and as
the bottom plot shows, is much more transitory in nature than ht. This allows for a volatility
shock with little to no persistence, where abrupt breaks are captured by ωst and we avoid the
problem that is common to standard GARCH and SV models, in which the effects of large
volatility shocks last too long (Mikosch and Stărică, 2004; Stărică and Granger, 2005).
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9 Out-of-Sample Forecasts
We perform recursive one-period ahead out-of-sample forecasts by using each of the models.
Two measurement are computed. We report the log-predictive likelihood (LPL), which eval-
uates the predictive accuracy of the entire predictive distribution. The second measure is
root-mean squared forecast error (RMSFE) of the predictive mean.

Table 3 shows the LPL, the log-Bayes factor in favour of the SV-IHMM against the
benchmarks, and the RMSFE among all of the models for the four datasets. We consider
a large out-of-sample period with which to compare he models. In this paper, the training
sample is set to approximately the first five-year data, and the out-of-sample period starts
from the closest beginning of a calendar year. For example, the out-of-sample size is 8,823
observations for AAPL, 10,856 observations for USD/CAD, 7,543 observations for Crude Oil,
and 1,164 observations for IP Growth. To compute the forecasts, each model is re-estimated
in each out-of-sample period.

There are several points worth mentioning. First, the SV-IHMM provides the best forecast
results compared to all of the benchmark models in terms of density forecasts. This model
also has a positive log-Bayes factor against all competitors. The SV-DPM specification is
the second-best model and is always superior to or marginally better than the SV-t. Third,
the GARCH-t is quite competitive and is better than the SV-t for IP Growth. The fat tails
of the SV-t are always preferred to the SV-N except for the case of IP Growth where the two
models predict equally well. The SV-N does produce fat tails in the predictive density but
the generally small degree of freedom of the parameter estimates in the SV-t (see Table 2)
indicate that this is insufficient. The SV-DPM and SV-IHMM capture the non-Gaussian fat
tails through a discrete mixture of distributions.

Although the evidence for the SV-IHMM is very strong over the SV-DPM we acknowledge
that the out-of-sample period is very large. This means that it takes a significant amount of
data to uncover the gains the SV-IHMM has over the SV-DPM. The key difference in these
models is the Markov chain structure governing the states in the SV-IHMM. Finally, the
differences in RMSFE the are very minor across models.

Some differences in the models can be seen in Figure 3 which shows log-predictive densities
for various dates. Generally, when necessary, the SV-IHMM can produce thicker tails than
the SV-DPM model.

9.1 Cumulative Log-Bayes Factors

Some insight into model performance is seen in Figure 4, which plots the cumulative log-BF
between the SV-IHMM and other top performing benchmark models at each point in time.

12

Electronic copy available at: https://ssrn.com/abstract=4069359



If the curve is sloping upward (downward), this indicates the SV-IHMM does better (worse)
in accounting for the associated realized data at time t.

Overall, each of the plots shows gradually increasing log-Bayes factors in support of the
SV-IHMM. None of the results of the final log-Bayes factors are driven by a few influential
outliers and, instead, come from consistent gains over the out-of-sample period. The SV-
IHMM can take some time to show improvements over the SV-DPM in the case of Crude Oil
and IP Growth. This is likely due to needing more data to learn about the more complex
transition matrix here.

10 Robustness
The hierarchical prior in the SV-IHMM automatically provides some robustness to prior
settings, but the priors on the precision parameters η and α are informative. This is standard
and necessary, as it imposes some weak structure on density estimation. Broadly speaking
these parameters control the number of active states in the model and, as such, govern
parsimony. To explore their impact on the results, we report the posterior estimates for
the full sample and we recompute the out-of-sample forecasts for a loose prior for η ∼
Gamma(5, 5) and α ∼ Gamma(5, 5) and a tight prior for η ∼ Gamma(0.5, 8) and α ∼
Gamma(0.5, 8).

Table 4 compares the results of two different prior settings. The posterior estimates of
the SV component are very similar over all prior settings but more states are used on average
for the loose prior as expected. The loose prior tends to reduce the LPL in the USD/CAD
application while it improves in IP Growth. The tighter prior does not show significant
changes in LPL with respect to benchmark prior. For AAPL and Crude Oil, the alternative
priors have a small impact on LPL and RMSFE.

11 Conclusion
This paper proposes a new Bayesian semiparametric stochastic volatility model with Marko-
vian mixtures. The model nests the SV-DPM model proposed by Jensen and Maheu (2010)
but allows the unknown innovation distribution to change over time. The empirical results
show that this change is important. In general, the SV-IHMM consistently outperforms all
of the benchmark models in terms of out-of-sample density forecasts. The results for the
SV-IHMM are robust to different prior settings.
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Table 1: Descriptive Statistics

Returns Mean Median StDev Skewness Ex.Kurtosis Min Max
AAPL 0.0711 0.0000 2.9081 -1.7501 46.5407 -73.1248 28.6890
USD/CAD -0.0006 0.0000 0.4087 0.1098 10.1554 -3.8070 5.0716
Crude Oil -0.0117 -0.0213 2.5514 1.8373 69.8919 -41.2023 64.3699
IP Growth 0.2493 0.2800 1.9409 -0.0607 12.8184 -14.6100 15.3219
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Table 2: Posterior Summary of Parameters
Panel A: AAPL

SV-IHMM SV-DPM SV-t GARCH-t
Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

µ 0.1188 ( 0.0816, 0.1559) 0.1417 ( 0.1239, 0.1563)
ξ 0.0122 ( 0.0067, 0.0188) β0 0.0260 ( 0.0139, 0.0404)
ϕ 0.9993 (0.9985, 0.9999) 0.9928 (0.9888, 0.9962) 0.9909 ( 0.9864, 0.9947) β2 0.9332 ( 0.9217, 0.9461)
σ2
ν 0.0011 (0.0007, 0.0017) 0.0098 (0.0058, 0.0147) 0.0122 ( 0.0078, 0.0182) β1 0.0394 ( 0.0324, 0.0452)

ν 6.1802 ( 5.5081, 6.9721) 5.2532 ( 4.9630, 5.4631)
α 1.2308 (0.7548, 1.8503)
η 0.9454 (0.4342, 1.6495) 0.4132 (0.1180, 0.8610)
K 10.3052 (8.0000,13.0000) 6.1295 (3.0000,10.0000)

Panel B: USD/CAD
SV-IHMM SV-DPM SV-t GARCH-t

Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

µ -0.0001 (-0.0038, 0.0035) -0.0005 (-0.0043, 0.0031)
ξ -0.0127 (-0.0189,-0.0069) β0 0.0001 ( 0.0000, 0.0002)
ϕ 0.9993 (0.9987, 0.9998) 0.9962 (0.9943, 0.9979) 0.9951 ( 0.9929, 0.9971) β2 0.9268 ( 0.9173, 0.9351)
σ2
ν 0.0024 (0.0015, 0.0033) 0.0116 (0.0091, 0.0148) 0.0132 ( 0.0100, 0.0174) β1 0.0542 ( 0.0473, 0.0620)

ν 10.0817 ( 8.2735,12.5834) 6.3324 ( 5.6626, 7.0463)
α 0.6543 (0.3615, 1.0422)
η 1.0455 (0.4979, 1.8023) 0.3647 (0.1060, 0.7685)
K 10.9187 (9.0000,14.0000) 5.3633 (3.0000, 9.0000)

Panel C: Crude Oil
SV-IHMM SV-DPM SV-t GARCH-t

Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

µ -0.0594 (-0.0965,-0.0227) -0.0754 (-0.0995,-0.0484)
ξ 0.0148 ( 0.0091, 0.0214) β0 0.0488 ( 0.0337, 0.0657)
ϕ 0.9933 (0.9901, 0.9961) 0.9893 (0.9851, 0.9931) 0.9875 ( 0.9826, 0.9916) β2 0.9068 ( 0.8920, 0.9197)
σ2
ν 0.0098 (0.0066, 0.0137) 0.0164 (0.0120, 0.0214) 0.0182 ( 0.0139, 0.0237) β1 0.0525 ( 0.0448, 0.0622)

ν 8.9162 ( 7.4014,10.9299) 5.1749 ( 4.8852, 5.7158)
α 1.5493 (0.8461, 2.4802)
η 0.5526 (0.1694, 1.2078) 0.4203 (0.1155, 0.9213)
K 5.6379 (4.0000,10.0000) 6.1468 (3.0000,12.0000)

Panel D: IP Growth
SV-IHMM SV-DPM SV-t GARCH-t

Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

µ 0.1411 ( 0.0956, 0.1869) 0.1631 ( 0.1183, 0.2040)
ρ 0.4158 ( 0.3576, 0.4734) 0.3973 ( 0.3466, 0.4574)
ξ -0.0098 (-0.0335, 0.0118) β0 0.0521 ( 0.0249, 0.0825)
ϕ 0.9966 (0.9941, 0.9990) 0.9970 (0.9948, 0.9992) 0.9622 ( 0.9354, 0.9866) β2 0.5993 ( 0.4912, 0.7464)
σ2
ν 0.0017 (0.0006, 0.0046) 0.0020 (0.0008, 0.0039) 0.1411 ( 0.0518, 0.2265) β1 0.2400 ( 0.1466, 0.3233)

ν 24.6920 ( 6.1601,48.5491) 4.5288 ( 3.5544, 5.5427)
α 1.2772 (0.7094, 2.1243)
η 0.6872 (0.2446, 1.3464) 0.5785 (0.2191, 1.1131)
K 6.9515 (5.0000,11.0000) 7.6072 (5.0000,11.0000)

Note 1: ρ denotes the parameter of the additional AR(1) term for each model.
Note 2: µ, ρ and ξ are state-dependent parameters for SV-IHMM and SV-DPM.
Note 3: β0, β1 and β2 are the GARCH parameters from (7).
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Table 3: Out-of-Sample Forecast Performance

AAPL USD/CAD
LPL log BF RMSFE LPL log BF RMSFE

SV-IHMM -19846.89 — 2.8373 -3581.02 — 0.4283
SV-DPM -19893.40 46.5087 2.8341 -3616.36 35.3434 0.4284
SV-t -19892.58 45.6890 2.8345 -3629.96 48.9389 0.4284
GARCH-t -19953.12 106.2377 2.8347 -3636.74 55.7248 0.4284
IHMM -19934.70 87.8154 2.8382 -3716.15 135.1321 0.4297
SV-N -20037.88 190.9949 2.8350 -3688.19 107.1708 0.4284
GARCH-N -20542.51 695.6251 2.8343 -3914.81 333.7918 0.4284

Crude Oil IP Growth
LPL log BF RMSFE LPL log BF RMSFE

SV-IHMM -16189.88 — 2.6687 -1622.73 — 1.6058
SV-DPM -16213.17 23.2905 2.6688 -1641.43 18.6986 1.5835
SV-t -16221.76 31.8723 2.6690 -1661.11 38.3765 1.5823
GARCH-t -16226.84 36.9565 2.6689 -1649.76 27.0263 1.5808
IHMM -16231.72 41.8338 2.6706 -1635.47 12.7412 1.5903
SV-N -17019.77 829.8850 2.6687 -1662.67 39.9405 1.5805
GARCH-N -16492.99 303.1089 2.6688 -1791.79 169.0626 1.5837

Note 1: The number of out-of-sample observations for AAPL, USD/CAD, Crude Oil and IP Growth are
8823, 10856, 7543 and 1164, respectively.
Note 2: The log Bayes factors are the difference between the log-predictive likelihoods of the SV-IHMM
model and each corresponding model.
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Table 4: Robustness: Posterior Estimates and Forecast Performance

AAPL
ϕ σ2

v α η K LPL RMSFE
Loose 0.9989 0.0014 3.3395 1.8419 13.1340 -19843.27 2.8373
Benchmark 0.9993 0.0011 1.2308 0.9454 10.3052 -19846.89 2.8373
Tight 0.9990 0.0011 0.7743 0.8449 10.4248 -19843.70 2.8379

USD/CAD
ϕ σ2

v α η K LPL RMSFE
Loose 0.9994 0.0015 1.2870 2.3436 16.3146 -3591.81 0.4283
Benchmark 0.9993 0.0024 0.6543 1.0455 10.9187 -3581.02 0.4283
Tight 0.9991 0.0023 0.6986 0.7403 9.0708 -3577.30 0.4283

Crude Oil
ϕ σ2

v α η K LPL RMSFE
Loose 0.9932 0.0099 3.6505 1.1750 6.9398 -16190.03 2.6695
Benchmark 0.9933 0.0098 1.5493 0.5526 5.6379 -16189.88 2.6687
Tight 0.9938 0.0081 1.5841 0.3766 5.0579 -16192.12 2.6691

IP Growth
ϕ σ2

v α η K LPL RMSFE
Loose 0.9964 0.0014 2.1213 1.5240 8.8890 -1616.03 1.6060
Benchmark 0.9966 0.0017 1.2772 0.6872 6.9515 -1622.73 1.6058
Tight 0.9964 0.0014 1.0268 0.4840 6.1176 -1624.92 1.6075
Note 1: This table reports posterior mean estimates for ϕ, σ2

v , α, η and K, in addition to out-of-
sample LPL and RMSFE using the same out-of-sample period as before.
Note 2: The loose prior represents Gamma(5, 5); the benchmark prior represents Gamma(2, 8);
and the tight prior represents Gamma(0.5, 8).
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Figure 1: Posterior Histogram of Number of Active States
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Figure 2: AAPL Application: Posterior Mean of Variance Components
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A Appendix: Posterior Sampling Steps for SV-IHMM
1. We sample u1:T |Γ,Π: The auxiliary slice variable U = {ut}Tt=1 is drawn from u1 ∼

U (0, γs1) and ut ∼ U
(
0, πst−1st

)
.

2. We update K. Similar to DPM model, if K does not meet the following condition

min {ut}Tt=1 > max {πjR}Kj=1 (24)

then K needs to be increased by 1 (K ′ = K + 1), and all of the parameters need to be
drawn from the base measure. In addition, since a new “major” state is introduced, Γ
and Π also need to be updated accordingly:

(a) ΘK′ ∼ H;

(b) We draw v ∼ Beta (1, η), then we update Γ = (γ1, . . . , γK , γK′ , γR)
′, where γK′ =

vγR and γR = (1− v) γR;

(c) We draw vj ∼ Beta (αγK′ , αγR), then we update Πj = (πj1, . . . , πjK , πjK′ , πjR) for
j = 1, . . . , K, where πjK′ = vπjR and πjR = (1− v) πjR;

(d) We draw the K ′th row of Π, ΠK′ , by ΠK′ ∼ Dir (αγ1, . . . , αγK , αγK′ , αγR).

The above steps are repeated until inequality (24) holds.

3. The forward filter for s1:T |r1:T , u1:T ,Γ,Π,Θ, h1:T . Iterating the following steps forward
from 1 to T , we have the following:

(a) The prediction step for initial state s1 is as follows:

p(s1 = k|u1,Γ) ∝ 1 (u1 < γk) , k = 1, . . . , K (25)

for the following states s2:T :

p(st = k|r1:t−1, u1:t,Π,Θ, h1:t−1) ∝
K∑
j=1

1 (ut < πjk) p (st−1 = j|r1:t−1, u1:t−1,Π,Θ, h1:t−1)

(26)

(b) We update the step for s1:T :

p (st = k|r1:t, u1:t,Π,Θ, h1:t) ∝ p (rt|rt−1, θk, ht) p (st = k|r1:t−1, u1:t,Π,Θ, h1:t−1)

(27)
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4. The backward sampler for s1:T |r1:T , u1:T ,Π,Θ, h1:T . We sample states s1:T using the
previously filtered values backward from T to 1:

(a) for the terminal state sT , we sample directly from p (sT |r1:T , u1:T ,Π,Θ, h1:T )

(b) for the rest states, we sample from the following,

p (st = k|st+1 = j, r1:t, u1:t+1,Π,Θ, h1:T ) ∝ 1 (ut+1 < πkj) p (st = k|r1:t, u1:t,Π,Θ, h1:T )

(28)

5. Sample c1:K |s1:T ,Γ, α. Following the sampling approach of Fox et al. (2011), we perform
the following:

(a) We count the number of each transition type, njk, number of times state j switches
to state k.

(b) We simulate an auxiliary trail variable xi ∼ Bernoulli
(

αγk
i−1+αγk

)
, for i = 1, . . . , njk.

If the trial is successful, then an “oracle” urn step is involved at the ith step toward
njk and we increase the corresponding “oracle” counts, ojk, by one.

(c) ck =
∑K

j=1 ojk.

6. Sample η: Following Fox et al. (2011) and Maheu and Yang (2016), we assume a
Gamma prior η ∼ Gamma (a1, b1), and let c =

∑K
j=1 cj,

(a) ν ∼ Bernoulli
(

c
c+η

)
(b) λ ∼ Beta (η + 1, c)

(c) η ∼ Gamma (a1 +K − ν, b1 − log λ)

7. Sample α: Following Fox et al. (2011), we assume a Gamma prior α ∼ Gamma (a2, b2)

and let nj =
∑K

k=1 njk,

(a) νj ∼ Bernoulli
(

nj

nj+α

)
(b) λj ∼ Beta (α + 1, nj)

(c) α ∼ Gamma
(
a2 + c−

∑K
j=1 νj, b2 −

∑K
j=1 log (λj)

)
8. Sample Γ|c1:K , η: Given the “oracle” urn counts c1:K and the property of Dirichlet

process, the conjugate posterior is

Γ|c1:K , η ∼ Dir (c1, . . . , cK , η) (29)
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9. Sample Π|n1:K,1:K ,Γ, α: Similarly, the conjugate posterior of Πj is

Πj|nj,1:K ,Γ, α ∼ Dir (αγ1 + nj1, . . . , αγK + njK , αγR) (30)

10. Sample Θ|r1:T , s1:T , h1:T . We define Yk ≡
(
e−

1
2
htrt|st = k

)T
t=2

, and Xk ≡
(
e−

1
2
ht |st = k

)T
t=2

.
The linear model is now

Yk = Xkµk + ωkϵk, ϵk ∼ N (0, I) (31)

The posteriors are

p (µk|Yk, ωk) ∼
∏

t:st=k

p (rt|µk, ωk) p (µk) (32)

∼ N (Mµ, Vµ) (33)

where

Mµ = Vµ

(
ω−1
k X ′

kYk +B−1
0 b0

)
(34)

Vµ =
(
ω−1
k X ′

kXk +B−1
0

)−1 (35)

and

p (ωk|Y,µk) ∝
∏

t:st=k

p (rt|µk, ωk) p (ωk) (36)

∼ IG (v̄, s̄) (37)

where

v̄ =
Tk

2
+ v0 =

1

2

T∑
t=1

1 (st = k) + v0 (38)

s̄ =
1

2
(Yk −Xkµk)

′ (Yk −Xkµk) + s0 (39)

11. Sample hierarchical priors.
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(a) Sample b0|µ1:K , B0, h0, H0 ∼ N (µb,Σb), where

µb = Σb

(
B−1

0

K∑
k=1

µk +H−1
0 h0

)
(40)

Σb =
(
KB−1

0 +H−1
0

)−1 (41)

(b) Sample B0|µ1:K , b0, a0, A0 ∼ IW (ΩB, ωb), where

ωb = K + a0 (42)

ΩB =
K∑
k=1

(µk − b0) (µk − b0)
′ + A0 (43)

(c) Sample s0|σ2
1:K , v0, c0, d0 ∼ Gamma (cs, ds), where

cs = Kv0 + c0 (44)

ds =
K∑
k=1

σ−2
k + d0 (45)

(d) Sample v0|σ2
1:K , s0, g0. There IS no easily applicable conjugate prior for v0, so a

Metropolis-Hastings step needs to be applied. We implement a Gamma proposal,
following Maheu and Yang (2016):

v′0|v0 ∼ Gamma

(
τ,

τ

v0

)
(46)

and the acceptance rate is

min

{
1,

p (v′0|σ2
1:K , s0, g0) /q (v

′
0|v0)

p (v0|σ2
1:K , s0, g0) /q (v0|v′0)

}
(47)

12. θh|h1:T : Equation (1d) is simply a linear regression model. Assuming conjugate prior
β ∼ N (bh, Bh), the posterior is

δ|σv, h1:T ∼ N (M,V ) (48)

M = V

(
σ−2
v

T−1∑
t=1

htht+1 + bhB
−1
h

)
(49)

V =

(
σ−2
v

T−1∑
t=1

h2
t +B−1

h

)−1

(50)
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Based on the above linear regression model with conjugate prior σ2
v ∼ IG (vh, sh), the

posterior is

σ2
v |δ, h1:T ∼ IG

(
T

2
+ vh,

∑T−1
t=1 (ht+1 − δht)

2

2
+ sh

)
(51)

13. Sample ht|h−t, r1:T ,Θ, s1:T : We use the block Metropolis-Hastings (MH) sampler as
in Jensen and Maheu (2010) with random block size k = Poisson (λh) + 1. The
proposal density is derived by approximating the autoregressive coefficient to 1. This
approximation provides an analytic inversion of the covariance matrix. We draw h′

(t,τ)

from the following proposal density

g
(
h(t,τ)| · · ·

)
= N

(
h(t,τ);Mh − 0.5Vh (ι− ỹ) , Vh

)
(52)

where

ỹi =
(ri − µsi)

2

ωsi

exp (−Mh,i) (53)

Mh,i =
(k + 1− i)ht−1 + ihτ+1

k + 1
, i = 1, 2, . . . , k (54)

Vh,ij = σ2
v

min (i, j) (1 + k)− ij

k + 1
(55)

V −1
h,ij =


2σ2

v i = j

−σ2
v j = i± 1

0 otherwise

(56)

We accept h′
(t,τ) with probability

min

1,
p
(
h′
(t,τ)|r1:T , h−(t,τ),Θ, s1:T

)
/g
(
h′
(t,τ)|h−(t,τ)

)
p
(
h(t,τ)|r1:T , h−(t,τ),Θ, s1:T

)
/g
(
h(t,τ)|h−(t,τ)

)
 (57)
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