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Abstract

I study a Bayesian persuasion model in which multiple senders sequentially
persuade one receiver, after observing signal structures of prior senders and
their realizations. I develop a geometric method, recursive concavification,
to characterize the Subgame Perfect Equilibrium paths. I show that if there
are two senders who have constant-sum payoffs, the truth-telling signal struc-
ture is always supported in equilibrium. I prove the existence of the silent
equilibrium, where at most one sender provides nontrivial information. I also
provide a sufficient condition under which it is without loss of generality to
focus on silent equilibria.
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1 Introduction
When one agent makes an attempt to persuade a decision maker, he might have
a concern about how other agents would follow up on his information and provide
additional information to the decision maker. In this situation, the information
revelation is largely shaped by strategic interaction between agents with potential
conflicts of interest.

To understand the importance of strategic interaction, let us review the motivat-
ing example in Kamenica and Gentzkow (2011). There is a defendant who is either
innocent or guilty. A judge wants to convict the guilty and acquit the innocent,
while a prosecutor wants to persuade the judge to convict the defendant. The pros-
ecutor can choose a process for gathering evidence about the defendant and present
that evidence to the judge. This process is what I refer to as a signal structure.
Once the prosecutor chooses the signal structure, he cannot hide or alter the signal
realization. However, he can choose a biased signal structure, in which the ex ante
probability of sending a convict signal is higher than the true probability that the
defendant is guilty. The judge realizes the extent to which the signal structure is
biased. But, a convict signal still implies that the person is more likely to be guilty,
so the judge follows the suggestion from the prosecutor. If, under the prior, the
judge would acquit, the prosecutor benefits from manipulating the signal structure.

Suppose now there is a defense attorney who desires acquittal. After observing
the signal structure chosen by the prosecutor and the signal realization, the attorney
also chooses a signal structure. The picture dramatically changes. If the prosecutor
continues to use a biased signal structure, the judge would be relatively uncertain,
and the attorney’s information becomes more valuable. That means the judge would
be inclined to follow the suggestion from the attorney, even though the attorney may
use a signal structure largely biased in his interest — that is, a signal structure that
sends an acquit signal with higher probability than the true probability that the
defendant is innocent. With this concern, it is uniquely optimal for the prosecutor
to fully reveal the information in the first place.

In this paper, I extend the canonical model of Bayesian persuasion (Kamenica
and Gentzkow, 2011) to the case of multiple senders, where the senders move sequen-
tially in a fixed order. A typical Bayesian persuasion analysis involves the receiver
breaking ties in favor of a certain sender. In Section 3, I will show that it is with loss
to impose a tie-breaking rule, in the sense that it would preclude certain equilibrium
of interest. However, I do not make such an assumption; instead, I will characterize
the full set of Subgame Perfect Equilibrium (SPE) paths in Section 6.
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With this in mind, I develop a novel method, called recursive concavification,
to characterize the set of SPE paths. The key of recursive concavification is to
decompose the problem into single-sender problems and then solve them one-by-one
in a backward manner. Note that the last sender always faces the same problem
as in a single-sender game. The previous play only influences his decision, in that
his belief is updated from prior information. This amounts to a new “prior” for the
single-sender game. To find the equilibrium signal structure, I obtain the set of the
sender’s continuation payoffs (“value correspondence”) derived from the receiver’s
best responses to her beliefs, and impose concave closure on the minimum of this
correspondence on the belief space. Then, in the spirit of Harris (1985), I solve for
the SPE paths of the continuation game beginning at the penultimate period. Based
on the characterization of SPE paths of the last two periods, I obtain the second to
last sender’s continuation payoffs in the subsequent continuation games. Since the
continuation payoffs are the only requirement needed to apply the concavification
method, this is equivalent to solving this sender’s problem as a single sender problem.
By repeating these steps, I can solve for the SPE paths of the whole game.

Next, I use this characterization to address two questions. In Section 7, I prove
the existence of a fully revealing equilibrium when there are two senders with
constant-sum utilities. Note, there may be more than two senders. What is re-
quired is that there are two senders with conflicting interest. The result coincides
with the insight in the aforementioned example of the prosecutor and attorney. The
reason is that, even when there are more than two senders, the incentive of those
with constant-sum utilities is neither effected by the other senders’ activity nor the
order of moves.

In Section 8, I examine a particular kind of equilibria, called a silent equilibrium.
In a silent equilibrium, at most one sender reveals information on the equilibrium
path. I, first, prove the existence of such an equilibrium. The basic idea is to find an
optimal signal structure for each sender such that it already contains information the
subsequent senders would like to release, were the information not revealed. Hence,
the incentives of subsequent senders to communicate disappear on the equilibrium
path. Second, I give a sufficient (but not a necessary) condition under which it is
without loss of generality to focus on silent equilibria. Many economically interesting
situations satisfy this condition, such as the motivating example in Board and Lu
(2018),1 the above prosecutor-attorney example, and a conflicting interest game in
Section 7.

1Board and Lu (2018) studies a search model.

3



The remainder of the paper is organized as follows. Section 2 summarizes the
existing literature that has relation to the current paper. Section 3 uses a simple
example to illustrate the main idea. Section 4 lays out the basic model. Sections 5
and 6 characterize the set of SPE paths in the cases of single sender and multiple
senders, respectively. Section 7 shows how competition among two senders with
constant-sum utilities yields a fully revealing equilibrium. Section 8 proves the
existence of a silent equilibrium and provides a condition for outcome equivalence
between silent equilibria and SPE. All proofs are relegated to the Appendix.

2 Literature Review

There has been a growing literature on Bayesian persuasion with multiple senders
(Au and Kawai, 2020; Board and Lu, 2018; Gentzkow and Kamenica, 2017a,b; Li
and Norman, 2020; Ravindran and Cui, 2020). Gentzkow and Kamenica (2017a,b)
focus on the case where multiple senders move simultaneously and explore conditions
under which competition among senders improves information transparency. Board
and Lu (2018) study Bayesian persuasion in a search model, and provide conditions
for the existence of a fully revealing equilibrium. Au and Kawai (2020) analyze
a model where multiple senders compete in disclosing positive information about
the quality of their products. Ravindran and Cui (2020) study a simultaneous-
move persuasion game in which senders with zero-sum payoffs construct independent
signal structures. They focus on the condition for uniqueness of fully revealing
equilibrium.

In simultaneous and independent work, Li and Norman (2020) also study the
game of multiple senders who move in a sequence. They assume that the receiver
plays pure strategies and breaks ties in favor of the last sender. Under this assump-
tion, they are able to simplify the problem into a linear programming task and reach
strong results, such as the outcome equivalence between SPE and silent equilibria
and the essential uniqueness of the silent equilibrium. However, this assumption
could be restrictive. In Section 3, I will provide an example that illustrates a sub-
stantively interesting equilibrium that is not captured by the analysis in Li and
Norman (2020). In Appendix D.1, I will present a counterexample in which an SPE
outcome cannot be achieved by any silent equilibria.

Methodologically, the method of recursive concavification draws on results from
the literature of SPE of infinite games (Harris, 1985; Hellwig, Leininger, Reny, and
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Robson, 1990). Harris (1985) points out that the necessary and sufficient condi-
tion for a strategy of a player moving at a certain period to be supported in an
equilibrium of an infinite game can be indicated by a lower bound for the player’s
continuation payoff. This lower bound is the highest payoff the player can guaran-
tee himself given that subsequent players coordinate in the worst SPE for him in
the following continuation games. Surprisingly, this lower bound has a geometric
representation in Bayesian persuasion games, that is, the concave closure over the
minimal continuation payoff function. If a sender designs a signal structure, pro-
vided the subsequent players coordinate in SPE, that would give him an expected
payoff not lower than the lower bound, this signal structure is supported on an SPE
path.

This paper also broadly relates to communication models in extensive form games
and dynamic programming. Aumann and Hart (2003) and Forges and Koessler
(2008) provide geometric characterizations of equilibrium outcomes in long cheap
talk and long disclosure games, respectively. They show how multistage exchanges of
verifiable or unverifiable messages expand the set of equilibrium outcomes. Krishna
and Morgan (2001) study a model in which a decision maker sequentially consults
two experts who are privately informed and can send cheap talk messages. When the
two experts are biased in opposite directions, they will reveal more information than
if there were a single sender. Ely (2017) analyzes a dynamic persuasion problem
in which a principal releases information about a stochastic process to an agent
who makes decisions in each period. In approaching the optimal persuasion scheme,
the author adopts a similar method to this paper, by repeatedly concavifying the
sender’s continuation payoff function. Pavan and Calzolari (2009) investigate a
contracting problem between a sequence of principals and one common agent. They
discuss to what extent themenu theorems in common agency problem can be applied
to the extensive form game.

3 Example

In this section, I am going to characterize the set of SPE paths of a specific example.
In particular, I find that to support some equilibrium, the receiver may need to
randomize between different actions on the equilibrium path. This is inconsistent
with any tie breaking rule for receiver that favors a certain sender.

Consider an entry game with one entrant, E, and two incumbents, I1 and I2.
Whether E wants to enter depends on the state of the market, which could be good
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Action

In A1 A2 Out

State
Good 4,4,4 13,4,3 4,13,3 13,13,0

Bad 0,0,-2 1,0,-1 0,1,-1 1,1,0

Table 1: Payoff Table for the Incumbents and the Entrant

or bad. There is a common prior µ0(bad) = 1
3 . E can stay out of the market, go in

independently (In), ally with I1 (A1), or ally with I2 (A2).
Table 1 presents players’ payoffs. Each table entry contains the payoffs for I1,

I2, and E, respectively. Notice the following features of the payoff structure. Each
incumbent prefers the entrant allying with himself or staying out, to her allying with
his opponent or operating independently. While their payoffs are negatively affected
by a bad state.

Let µt (t = 1,2) be the posterior probability that the state is bad after period
t. The entrant’s best responses depend on the second period belief µ2. The entrant
would like to choose In when µ2 ≤ 1

2 , A1 or A2 when µ2 ∈ [1
2 ,

3
4 ], and Out when

µ2 ≥ 3
4 .

The state is unknown to all firms. But the incumbents can produce signal struc-
tures that generate signals about the state. A signal structure π maps states onto
distributions over a signal space {G,B}, i.e., π : {good,bad}→∆({G,B}). The firms
move sequentially. I1 chooses π1 that sends a signal s1. I2 observes (π1, s1), and
then chooses π2 that sends s2. Finally, E observes (π1, s1,π2, s2), and then takes an
action from {In,A1,A2,Out}.

Given any µ2, E’s best responses induce a set of continuation payoffs for I2.
Figure 1 shows the set of I2’s payoffs given E’s best response as a function of µ2.
When µ2 ∈ [1

2 ,
3
4 ], E has two optimal choices, A1 and A2. Since she can randomize

between them, I2’s feasible continuation payoffs are between the expected payoffs
deriving from A1 and A2. Differently from this paper, Kamenica and Gentzkow
(2011) and Li and Norman (2020) restrict E to take A2 when she is indifferent,
which leads to the maximal payoff function on the belief space.

At the start of period 2, the game can be seen as one that involves a single sender,
I2, with a common prior µ1. I first discuss the lower bound on I2’s equilibrium
payoffs given each µ1. When µ1 ∈ [0, 3

4 ], I2 should get an expected payoff at least 4.
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Figure 1: I2’s Continuation Payoffs

Otherwise, I2 can deviate to another signal structure that induces posterior beliefs
µ2 = 0 and µ2 = 3

4 + ε, and will receive an expected payoff which converges to 4
when ε goes to 0. When µ1 ∈ (3

4 ,1], his equilibrium payoff is uniquely determined,
since it is in his best interest to babble and let E stay out. This lower bound is
indicated by the red curve in Figure 1. A general result in Section 6 will show
a sufficient condition to characterize equilibrium strategies. That is, any signal
structure, followed by the entrant’s best responses, that gives I2 an expected payoff
higher than the lower bound is an equilibrium strategy.

Next, by using the lower bound, I can geometrically characterize the SPE paths
of any continuation games beginning at period 2. Notice three typical types of SPE
paths in different continuation games. First, consider the case where µ1 = 0. In that
case, after the first period, the state is known to be good. So, I2’s signal has no effect
and E will enter independent of the signal. Thus, I1’s payoff is 4. Second, consider
the case where µ1 ∈ [1

2 ,
3
4 ]. In that case, I2 babbles, which results in µ2 = µ1. There

is an SPE of this continuation game where I2 babbles and, with probability at least
9
5 −

12
5 µ1, E allies with I2. Under that strategy profile, I2 has an expected payoff

above 4; this meets the lower bound for SPE paths. Third, consider the case where
µ1 ∈ (3

4 ,1]. In that case, I2 babbles and E stays out. So, I1’s expected payoff is
13−12µ1. I1’s equilibrium payoffs on these three types of SPE paths are illustrated
by the black point, the shaded area, and the solid line in Figure 2.

Of course, the set of the SPE paths is more abundant than I have described.
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Figure 2: I1’s Continuation Payoffs

Yet, in terms of I1’s continuation payoffs, it suffices to create the convex hull of the
above three areas, as indicated by the dashed lines in Figure 2. That is because I2

can create a signal structure that randomizes between different SPE paths, which
itself forms an SPE path. Therefore, I1’s payoff is the convex combinations of those
on the original SPE paths. It can be checked that I1’s equilibrium payoff does not
go beyond this convex hull.

After obtaining I1’s value correspondence, I can solve for his equilibrium strate-
gies. It turns out that I1’s equilibrium payoffs should be bounded below by the
payoffs deriving from the fully revealing strategy. This lower bound is indicated
by the red curve in Figure 2. Again, this condition is not only necessary, but also
sufficient. That means the range of I1’s equilibrium payoffs is [3, 14

3 ], as shown by
the blue dotted line in Figure 2. The SPE path that achieves his highest payoff is
specified as below. I1 uses a signal structure π1 such that

π1(G|good) = 1
2 π1(B|good) = 1

2
π1(G|bad) = 0 π1(B|bad) = 1

By Bayes rule, if the signal realized is G, that means the true state is good; while
if the signal realized is B, the posterior is that µ1 = 1

2 . On the equilibrium path, I2

babbles regardless of which signal is sent, and E chooses In after G and 3
5A1 + 2

5A2

after B.
Note that I1’s favorite equilibrium outcome involves E breaking ties by taking
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a mixed action, not completely in favor of either incumbent. That is different from
Li and Norman (2020), who require that E breaks ties in favor of I2. Therefore,
this paper provides a characterization of a broader set of equilibrium outcomes in a
sequential Bayesian persuasion game.

4 Model

In this section, I lay out a sequential game with multiple senders. The states of the
world are Ω = {ω1, . . . ,ωN}, N ∈ N. Players have a common prior, µ0 ∈ int(∆(Ω)).
There are T senders and 1 receiver who move in a sequence. Each sender has access
to a set of costless signal structures Π. A signal structure π : Ω→ ∆(S) maps
each state ω into a probability distribution over the finite signal space S, where
|S|≥ N +T . Each signal structure π induces from a prior belief µ a distribution
over posterior beliefs τ(·|π,µ) ∈ ∆(∆(Ω)), which is called an information policy.
Since the signal space is finite, throughout this paper I only consider information
policies with finite support, such that |supp(τ)|≤ |S|. By Bayes rule, the expectation
of an information policy equals the prior, that is,

∑
µ′∈supp(τ)

τ(µ′) ·µ′ = µ (1)

Conversely, for any distribution of posterior beliefs with support no greater than
|S| satisfying Eq. (1), there is a signal structure the sender can choose to induce
it (Aumann and Maschler, 1995; Kamenica and Gentzkow, 2011). In other words,
such a distribution of beliefs constitutes an information policy.

The receiver takes an action a from a finite set A. Utility functions of all players
depend on the state and the action. The senders’ utility functions are denoted by
vt(a,ω), t = 1, . . . ,T , and the receiver’s utility function u(a,ω). All utility functions
extend naturally to expected utility functions of mixed actions.

The timing of the game is as follows:

Date 0 Nature picks a state ω according to µ0. The true state ω is unknown to all
players.

Date 1 Sender 1 chooses π1 ∈ Π which generates s1 ∈ S.

Date 2 After observing (π1, s1), sender 2 chooses π2 ∈ Π which generates s2 ∈ S.

. . .
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Date T After observing (π1, s1,π2, s2, . . . ,πT−1, sT−1), sender T chooses πT ∈ Π
which generates sT ∈ S.

Date T + 1 After observing (π1, s1,π2, s2, . . . ,πT , sT ), the receiver takes an action
a ∈ A.

As the game unravels, more information is released and players’ beliefs keep
changing. Denote the updated belief after period t by µt. From period t onward,
µt−1 can be interpreted as the new “prior,” and the signal structure πt will further
lead to τt(·|πt,µt−1) as a distribution over µt. A history up until the end of date t
consists of a sequence of signal structures and their realizations, which is denoted
by ht = (π1, s1, . . . ,πt, st), ht ∈ Ht. Let h0 be the initial node. Conditional on any
history ht, there is a unique belief µ̄(ht) associated with the information set updated
by Bayes rule.

The (mixed) strategy of sender t is a mapping σt :Ht−1→∆(Π) and the (mixed)
strategy of the receiver ρ : HT →∆(A). Denote the strategy set of sender t by Σt

and that of the receiver ΣR. Fixing the belief system µ̄, under a strategy profile
(σ,ρ) the expected payoff for sender t conditional on a history h is represented by
v̄t(h;σ,ρ). The solution concept of this paper is given below.

Definition 1. A Subgame Perfect Equilibrium (SPE) is a strategy profile (σ1, . . . ,σT ,ρ)
such that for each t= 1, . . . ,T , ht ∈Ht, and σ′t ∈ Σt, it satisfies that:

E[vt(a,ω) |ρ,σ−t,σt(ht), µ̄(ht)]≥ E[vt(a,ω) |ρ,σ−t,σ′t, µ̄(ht)]

and for each α ∈∆(A) and hT ∈HT ,

E[u(ρ(hT ),ω) | µ̄(hT )]≥ E[u(α,ω) | µ̄(hT )]

Following any history ht, the remaining game takes the same form of the original
game with a common prior µ̄(ht) and players including senders t+1, . . . , T , and the
receiver. Denote this continuation game by G(ht), and an SPE path of the game by
γ̄(ht). Finally, let Γ(ht) and Γ̄(ht) represent the sets of SPE and SPE paths of the
continuation game G(ht), respectively. In the next two sections, I will discuss how
to characterize Γ̄(ht), for any t and ht ∈Ht, recursively.
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5 Single Sender

In this section, I have a review of the standard Bayesian persuasion problem (Ka-
menica and Gentzkow, 2011) and introduce a novel method to analyze the full set
of SPE paths.

There is one sender who persuades one receiver. After collecting information
from the sender, the receiver updates her belief to µ and has a set of best responses
r(µ)⊆∆(A). Based on the receiver’s best responses, the sender’s continuation payoff
correspondence (“value correspondence”) is denoted by V (µ) = {E[v(α,ω) |µ] | α ∈
r(µ)}. By the Maximum Theorem, V is nonempty valued and has closed graph
(Appendix A.1). Let V̄ and V represent the pointwise maximal and minimal values
of V .

Next, I introduce the definition of the concave closure of a given function f , cl(f).
There are two equivalent definitions according to Hiriart-Urruty and Lemaréchal
(2012) pp.99, Proposition 2.5.1..The most well known definition describes it as the
lowest concave function that dominates a certain function pointwise. However, I
mainly use another definition, which states that the concave closure is the supremum
of the convex combinations of function values.2

Definition 2. If X is a convex compact measurable set, for any function f :X→R,
its concave closure cl(f) is a function on X such that at any x ∈X

cl(f)(x) = sup
q∈∆(X)
E[q]=x

∑
q′∈supp(q)

q(q′) ·f(q′)

Under an SPE (σ,ρ), its equilibrium path consists of a signal structure π that
yields an information policy τ , and a set of actions {ᾱ(s)}s∈S associated with each
realized signal under π. Indeed, the concave closure of the minimal value cl(V ) is
the threshold for determining an equilibrium path.

Lemma 1. (π,{ᾱ(s)}s∈S), where π induces an information policy τ , is an SPE path
if and only if

1. v̄(π, ᾱ)≥ cl(V )(µ0).

2. For any s ∈ S, ᾱ(s) ∈ r(µ̄(π,s)).
2The original definition calculates the convex combination of countably many elements. In this

paper I assume a finite signal space, that means the cardinality of supp(q) is finite, too. However,
by Carathéodory Theorem, it suffices to use |Ω| elements to approximate the supremem. So q
can be viewed as an information policy whose support has |Ω| elements, which will not affect the
definition of the concave closure.
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The existence of an SPE is derived from the closedness of V (Appendix A.3). The
maximal value function of V , V̄ , is well defined on ∆(Ω) and upper semi-continuous
(USC). Hence, the value on the concave closure, cl(V̄ )(µ0), is achievable by using
some signal structure and is certainly no less than cl(V )(µ0).

Lemma 2. For any µ0 ∈ int(∆Ω), an SPE exists.

The range of SPE payoffs for the sender is sandwiched by the concave closure of
the maximal and minimal value functions (Appendix A.4). As has been discussed
above, cl(V̄ )(µ0) and cl(V )(µ0) are equilibrium payoffs. Then, the sender can con-
struct a signal structure that randomizes across the two equilibrium signal structures
underlining the equilibrium paths. Let the receiver respond in the same way as on
the two equilibrium paths. Therefore, any payoff in between can be achieved in such
a construction where the sender’s payoff is not lower than the threshold, cl(V )(µ0),
and the receiver best responds.

Proposition 1. The set of SPE payoffs to the sender is [cl(V̄ )(µ0),cl(V )(µ0)].

6 Multiple Senders

In this section, I introduce more senders into discussion and show that the key
results in the case of single sender carry over to the more complicated situation. I
will characterize the set of SPE paths by recursively applying the geometric method.

Initially, define the set of the continuation payoffs for sender k conditional on an
updated belief µ after period t as

V k
t (µ) = {v̄k(ht;σ,ρ) | µ̄(ht) = µ,(σt+1, . . . ,σT ,ρ) ∈ Γ(ht)} (2)

In the last period, the value correspondence for Sender T , V T
T , is calculated in

the same way as that in the single sender case, which only depends on the receiver’s
best responses. Therefore, I can use cl(V T

T ) as the criterion to solve for the set of
equilibrium paths Γ̄(hT−1) for any hT−1 ∈HT−1. Once I obtain Γ̄(hT−1), the value
correspondences of the penultimate period, {V k

T−1}Tk=1, are well defined. Similar to
the single sender case, V k

T−1 has two properties: (1) It is non-empty valued. Because
according to Lemma 2, an SPE exists in every continuation game G(hT−1). (2) It
has closed graph. Because the set of equilibrium paths is upper hemi-continuous.

Consider the persuasion problem of sender T − 1. It is equivalent to a single
sender game with a common prior µ̄(hT−2) and a value correspondence V T−1

T−1 . Note
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that the value correspondence that summarizes his continuation payoffs in following
continuation games is essential to determine his optimal strategies. Again, to reach
the concave closure of the minimal value function cl(V T−1

T−1) is the necessary and
sufficient condition for the characterization of Γ̄(hT−2). After obtaining Γ̄(hT−2),
{V k

T−2}Tk=1 are well defined, and I can move on to characterize Γ̄(hT−3) with the
similar method, so on and so forth. Finally, I can characterize the set of SPE paths
of the original game, Γ̄(h0).

Theorem 1. The set of SPE paths Γ̄(h0) can be solved by the recursive paradigm as
described above. For each ht−1 ∈Ht−1 such that µ̄(ht−1) = µt−1, a profile γ̄(ht−1) =
(πt,{γ̄(ht−1,πt, s)}s∈S) is an SPE path of G(ht−1) if and only if v̄t(ht−1; γ̄(ht−1))≥
cl(V t

t)(µt−1). An SPE always exists in G(ht−1). Furthermore, V k
t is nonempty

valued and has closed graph for each k and t.

7 Constant-Sum Utilities and Full Revelation

In the literature of communication games, it has been extensively discussed the re-
lationship between conflicts of interest and information revelation. Milgrom and
Roberts (1986) have shown that if the receiver has advisors with conflicting inter-
est, then full revelation can be sustained even when the receiver is unsophisticated
and ill-informed about the preferences of the senders. In the sequential cheap talk
model studied by Krishna and Morgan (2001), the receiver is able to extract more
information from senders who have opposing biases, but she will not have full in-
formation unless she add another stage for senders to rebuke each other. Battaglini
(2002) obtains a strong result that full information is generically possible regardless
of incentives once extending the cheap talk model to allow for multidimensional
states and more than one senders. Ravindran and Cui (2020) also analyze compe-
tition among senders in the context of Bayesian persuasion. Unlike this paper, in
their setup, there are two or more senders who move simultaneously and employ
independent signal structures. They conclude that full information is the unique
equilibrium outcome if and only if senders’ utilities are sufficiently nonlinear.

Here I present a result that embodies the idea that competition among senders
can give rise to full information in the context of Bayesian persuasion.

Theorem 2. In a sequential persuasion game with T ≥ 2 senders, if there are two
senders who have constant-sum utilities, full revelation is supported as an equilibrium
outcome.
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L C R

ω0 (4,0,3) (3,3,2) (0,4,0)
ω1 (4,0,0) (3,3,2) (0,4,3)

Table 2: Two Senders with Conflicting Interest

In this paragraph I discuss the intuition of the proof when T = 2. First, from
Theorem 1, we know that after any history h1 ∈H1 such that µ̄(h1) = µ1, the most
favorable equilibrium outcome for sender 2 results in a payoff V̄ 2

1 (µ1) = cl(V̄ 2
2 )(µ1).

Because the senders have constant-sum utilities (assuming they sum to c ∈ R), the
best SPE outcome for sender 2 turns out to be the least favorable for sender 1, so
that V 1

1 = c− V̄ 2
1 . Note that V̄ 2

1 is a concave function in µ1, which means V 1
1 is

convex, and the criterion for sender 1’s equilibrium strategy cl(V 1
1) is a hyperplane.

This hyperplane coincides with the continuation payoffs for sender 1 deriving from
fully revealing the states. By Theorem 1, it is optimal for sender 1 to fully reveal
the state.

Nevertheless, the full information result is sensitive to the assumption of constant-
sum utilities. A plausible alternative condition on the payoff structure is conflicting
interests, which also implies that senders have opposite ordinal preferences over
outcomes. But there is a counter example to this conjecture as below.

Suppose in a game with two senders, Ω = {ω0,ω1}, A= {L,C,R}, and µ0(ω1) = 2
3 .

Each entry of Table 2 presents the payoffs to sender 1, sender 2, and the receiver.
Note that senders’ payoffs are independent of the state, sender 1 prefers L to C to
R, while sender 2 has the opposite ordinal preferences. The receiver would like to
take L when µ(ω1) ≤ 1

3 , C when 1
3 ≤ µ(ω1) ≤ 2

3 , and R when µ(ω1) ≥ 2
3 . Figure 3

depicts senders’ value correspondences V 1
2 and V 2

2 as the black lines.
Let me operate the recursive method to solve for the equilibrium outcome of this

game, as illustrated by Figure 3. The red curve in the lower figure indicates sender
2’s value function V 2

1 , which is the concave closure of V 2
2 ; accordingly, and the red

curve in the upper figure indicates V 1
1 . Then, I concavify V 1

1 and obtain the blue
curve in the upper figure. This function illustrates sender’s 1 equilibrium payoff.
It is easy to see that when µ0(ω1) = 2

3 , there is only one optimal way for sender 1
to provide persuasion, that is, to induce an information policy supported on {1

3 ,1}.
Thus, in the unique equilibrium, the sender only reveals partial information.
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Figure 3: The equilibrium in the case of conflicting interest

8 Silent Equilibrium

When senders move simultaneously and senders can correlate their signal structures
(Gentzkow and Kamenica, 2017a,b), it suffices to let only one sender reveal infor-
mation on the equilibrium path. But in the sequential case this may not be true.
Because later senders’ strategies are contingent on those of prior senders, it is pos-
sible that the second sender always wants to add something to what the first sender
has told. However, I find that there generally exists a specific type of equilibrium
where only one sender “speaks,” which I call a silent equilibrium.

Definition 3. An SPE is a silent equilibrium if at most one sender reveals infor-
mation on the equilibrium path.

It may be counter-intuitive at first glance why senders are willing to waste their
opportunities to persuade. The reason is in large part due to sequential moves and
public signals. Under any existing signal structure, the next sender is able to come
up with another signal structure if and only if it is weakly more informative in
Blackwell order. In a silent equilibrium, senders incorporate follow-up persuasion
into their own persuasion, and then there is no need for subsequent senders to take
further actions, given that what they would like to “say” has already been told.
On the other hand, if they deviate, either their speeches make no difference, or
subsequent senders will reveal information in a more harmful way.
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In what follows, I will first prove the existence of a silent equilibrium and then
give a condition for the outcome equivalence between SPE and silent equilibria.

8.1 Existence

Theorem 3. There exists a silent equilibrium.

The proof is constructive. In the construction, the strategy of each player
prescribes the same action contingent on the set of histories associated with the
same belief. To abuse the notion, I write σMt (µ) and ρM (µ) as sender t’s strategy
and receiver’s strategy in the silent equilibrium. Also, in this subsection I define
V k
t (µ) = {v̄k(σMt+1, . . . ,σ

M
T ,ρ

M ) |µt = µ} as senders’ value correspondences based on
the equilibrium strategies I construct. The contingency on beliefs suggests that V k

t

is a single-valued function.
Consider the receiver first. When she is indifferent between multiple actions, she

breaks ties in a way that favors senders who comes later with descending priority:
sender T � sender (T −1) · · · � sender 1. Find any optimal ρM that satisfies this tie-
breaking rule. Given such ρM , sender T has an upper semi-continuous (henceforth
USC) value function V T

T . Then I can solve for sender T ’s optimal strategy σMT

(Kamenica and Gentzkow, 2011).
Let me introduce an important concept, the silent set for sender T , ST = {µT−1 ∈

∆(Ω) |V T
T (µT−1) = cl(V T

T )(µT−1)}. ST coincides with the set of beliefs such that
sender T does not benefit from providing additional information. When µT−1 ∈ ST ,
let Sender T babble; When µT−1 6∈ ST , let sender T spread posteriors over the silent
set, i.e., supp(τT )⊆ ST .

Based on Sender T ’s behavior, Sender T −1 realizes that the induced belief will
finally lie in ST . Therefore, he only needs to consider ST as the feasible support
of his information policy. It can be proved that ST is closed and by the receiver’s
tie-breaking rule, V T−1

T−1 is upper semi-continuous on ST . So, there exists an optimal
strategy for Sender T −1, σMT−1.

Recursively, I can obtain senders’ optimal strategies, value functions, and silent
sets St = {µt−1 ∈ ∆(Ω) |V t

t (µt−1) = cl(V t
t (µt−1))}∩St+1. There exists an optimal

strategy for each sender because St+1 is closed and V t
t is upper semi-continuous on

St+1. By construction, the silent sets are shrinking as t decreases. After Sender 1
spreads his posteriors over S1, it holds that µ1 ∈ St, for all t = 2, . . . ,T , so that all
the subsequent senders are willing to stay silent.
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8.2 Outcome equivalence between SPE and silent equilibria

Heuristically, any equilibrium outcome should be supported in an equilibrium where
the first sender reveals all the information the subsequent senders would have re-
vealed on the equilibrium path. However, this is not true. For senders who come
later, to voluntarily provide a piece of information is different from taking it as
given and saying nothing. To accept the existing signal structure, it requires that,
for each signal realized, sender t should receive high enough payoff from keeping
silent. But if it is sender t himself who reveals information, he only needs to receive
high enough expected payoff from sending all those signals. In the second case, the
incentive constraints for the equilibrium could be relaxed. In Appendix D.1, I will
present an SPE outcome that requires more than one sender to reveal information.

Nevertheless, I find that, for each sender t, the difference between revealing in-
formation by himself and by previous senders disappears when the concave closures
over his maximal and minimal value function coincide, i.e., cl(V̄ t

t ) = cl(V t
t). This is

a sufficient condition for the outcome equivalence between SPE and silent equilib-
ria. There are many examples that satisfy this condition, including the motivating
examples in Kamenica and Gentzkow (2011) and Board and Lu (2018), the court
example at the beginning of Section 1, and the conflicting interest game in Section
7. Below, I will formalize this result.

Let me define an equilibrium outcome as the ex ante distribution of posteriors
induced from an SPE and the associated (mixed) actions with each posterior.3 Sup-
pose there is an SPE (σ1, . . . ,σT ,ρ). Let (τ e,λe) be the equilibrium outcome. τ e

is the ex ante distribution of posterior beliefs deriving from the signal structures
on the equilibrium path. λe is the function that maps each equilibrium posterior
belief to the induced (mixed) action. For each µ ∈ supp(τ e), there is a signal vec-
tor s ∈ ∏T

t=1St such that the posterior belief µ̄(s) = µ and the associated action
λe(µ) = ρ(s).

Definition 4. Two SPE are outcome equivalent if their equilibrium outcomes,
(τ e1 ,λe1) and (τ e2 ,λe2), are the same.

Finally, I present the theorem that shows the equivalence result.

Theorem 4. If for each t≥ 2, cl(V̄ t
t ) = cl(V t

t), every outcome of an SPE is supported
by a silent equilibrium.

3This definition is closely related to the standard definition of equilibrium outcome as induced
distribution over the product space of states and actions, for that an equilibrium outcome under
my definition refers to a unique equilibrium outcome under the latter definition.
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It is worth noting that this result does not hold for Markov Perfect Equilibrium
(MPE), where I contingent strategies on beliefs as in Section 8.1. Under an MPE,
the value correspondence of each sender is a single-valued function in belief, with a
unique concave closure. It seems plausible that it is a case that satisfies the condition
of Theorem 4. However, to let subsequent senders babble on the MPE path no only
changes the on-path behavior, but also the off-path behavior conditional on some
realized belief. As a result, it will further affect preceding senders’ optimal choices
and the silent equilibrium might break down. By contrast, an SPE is immune to this
effect. A strategy contingent on histories can differentiate between information from
different sources, despite the same posterior realized. So the value correspondences
are invariant to whichever SPE path is considered.
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Appendix

A Section 5

A.1

Proposition 2. V is nonempty valued and has closed graph.

Proof. By the Maximum Theorem, r(·) has nonempty and compact values for each
µ ∈∆(Ω) and is upper hemicontinuous (uhc). Thus, V is nonempty valued.

Suppose there is a sequence (µn,vn) such that vn ∈ V (µn) for each n ∈ N and
(µn,vn)→ (µ,v∗). For each n∈N, there is αn ∈ r(µn) such that vn =E[v(αn,ω) |µn].
Because r is uhc, (αn)∞n=1 has a limit point α ∈ r(µ). Then, because v is continuous,
v∗ = E[v(α,ω) |µ] ∈ V (µ).
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A.2 Proof of Lemma 1

Proof. The proof is straightforward after laying out cl(V ) algebraically according to
Definition 2.

cl(V )(µ0) = sup
τ∈∆(∆(Ω))
E[τ ]=µ0

∑
µ∈supp(τ)

τ(µ) ·V (µ)

= sup
τ∈∆(∆(Ω))
E[τ ]=µ0

∑
µ∈supp(τ)

τ(µ) · min
α∈r(µ)

E[v(α,ω) |µ]
(3)

If v̄(π, ᾱ)≥ cl(V ), I can construct a SPE (σ,ρ) that is consistent with (π, ᾱ). Let
σ(µ0) = π and ρ coincide with ᾱ on the equilibrium path. When the sender deviates
to any other signal structure π′, ρ prescribes a minimal reaction for each h= (π′, s)
such that

ρ(h) ∈ argmin
α∈r(µ̄(h))

E[v(α,ω) | µ̄(h)] (4)

In other words, if the sender deviates from π, the receiver will break ties by
punishing him as severe as possible. Given ρ, the ex ante payoff for the sender
when he deviates to π′ (which induces τ ′) can not exceed the concave closure of the
minimal value.

v̄(π′,ρ) =
∑

µ∈supp(τ ′)
τ ′(µ) · min

α∈r(µ)
E[v(α,ω) |µ]≤ cl(V )(µ0)≤ v̄(π,ρ)

On the other hand, suppose (σ,ρ) is an equilibrium consistent with (π, ᾱ) and
v̄(π, ᾱ) < cl(V )(µ0), then there exists a signal structure π′ (inducing τ ′) that gives
the sender an ex ante payoff higher than v̄(π, ᾱ) even if the receiver takes minimal
actions given by Eq. (3). Therefore, it is profitable for the sender to deviate to π′

because

v̄(π′,ρ) =
∑

µ∈supp(τ ′)
τ ′(µ) ·E[v(a,ω) |ρ,µ]≥

∑
µ∈supp(τ ′)

τ ′(µ) ·V (µ)> v̄(π,ρ)

This is a contradiction to that (π, ᾱ) is an equilibrium path.

A.3 Proof of Lemma 2

Proof. Because V has closed graph, V̄ is a well defined upper-semi continuous func-
tion on ∆(Ω). There is a path (π, ᾱ), where π induces τ , such that: (1) for each
s ∈ S, ᾱ(s) ∈ r(µ̄(π,s)) and E[v(ᾱ(s),ω) |µ] = V̄ (µ); (2) v̄(π, ᾱ) = cl(V̄ )(µ0).

Since cl(V̄ )(µ0)≥ cl(V )(µ0), by Lemma 1, (π, ᾱ) is an equilibrium path.
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A.4 Proof of Proposition 1

Suppose v∗ = (1−β)cl(V )(µ0) +β cl(V̄ )(µ0), for β ∈ [0,1]. I want to show that v∗

is an equilibrium payoff for the sender.
Because the best response r is upper hemicontinuous and V has closed graph,

cl(V )(µ0) and cl(V̄ )(µ0) are equilibrium payoffs via paths {τ ,{α(s1)}s1∈S1} and
{τ̄,{ᾱ(s2)}s2∈S2}. Then consider another path

{(1−β)τ +βτ̄ , {α(s)}s∈S1\S2

⋃
{ᾱ(s)}s∈S2\S1

⋃
{α∗(s)}s∈S1∩S2},

where α∗(s) = (1−β)α(s) +βᾱ(s). On this path, the receiver best responds to
each signal and the sender’s payoff is equal to v∗ ≥ cl(V )(µ0). According to Lemma
1, This is an equilibrium path.

B Section 6

B.1 Proof of Theorem 1

Throughout this section, I restrict the signal space S to containing (N + T ) ele-
ments. Heuristically, this will narrow down the ranges of {V k

t }Tk=1. But it is not the
case. From a geometric point of view, each point in the graph of V k

t must be the
convex combination of the points inside the graph of V k

t+1 prescribed by σt+1. By
Carathéodory theorem, any point in graph{(V 1

t+1,V
2
t+1, . . . ,V

T
t+1)} can be expressed

as the convex combination of at most (l+T ) points in graph{(V 1
t ,V

2
t , . . . ,V

T
t )}, in

that graph{(V 1
t ,V

2
t , . . . ,V

T
t )} is of (N+T −1) dimensions. It suffices to use a signal

structure that sends at most (N +T ) signals.
Also, the finite state space implies that the set of signal structures Π = (∆S)Ω is

compact. For any history ht ∈Ht, an equilibrium path γ̄(ht) composes of a sequence
of contingent signal structures and a distribution of actions, (πt+1,πt+2(·|st+1), . . .,
πT (·|sT−1, . . . , st+1), a(sT , . . . , st+1))(sT ,...,st+1)∈ST−t , which is contained in a compact
set Π×ΠN ×·· ·×ΠNT−t−1×ANT−t . So any sequence of the equilibrium paths has
a converging subsequence. Roughly speaking, this property, combined with the
continuous utility functions, leads to the closedness of value correspondence.

Before diving into the details, I present two useful lemmas concerned with how
converging signal structures give rise to converging beliefs and utilities.

Lemma 3. For any µn ∈ ∆Ω, πn ∈ Π such that µn→ µ and πn→ π, let λn(·|s),
λ(·|s) represent posterior beliefs induced by a signal s under πn,π. Then, for any
ω and any s ∈ ⋃

ω∈Ω supp(π(ω)), Pr(s|π,µ) = limn→∞Pr(s|πn,µn) and λ(ω|s) =
limn→λ

n(ω|s).

21



Proof. For any s ∈ S,

Pr(s|π,µ) =
∑
ω∈Ω

µ(ω) ·π(s|ω) = lim
n→∞

∑
ω∈Ω

µn(ω)πn(s|ω) = lim
n→∞Pr(s|π

n,µn)

For any s ∈ ⋃
ω∈Ω supp(π(ω)) and any ω ∈ Ω,

λ(ω|s) = π(s|ω)µ(ω)∑
ω′∈Ωπ(s|ω′)µ(ω′) = lim

n→∞
πn(s|ω)µn(ω)∑

ω′∈Ωπn(s|ω′)µn(ω′) = lim
n→∞λ

n(ω|s)

Lemma 4. For any {(hn)∞n=1,h} ⊆ Ht s.t. µ̄(hn) = µn, µ̄(h) = µ, and µn → µ.
Suppose there is a sequence of paths γn(hn) that converges to a path γ(h), then for
any k = 1, . . . ,T , v̄k(hn;γn(hn))→ v̄k(h;γ(h)).

Proof.

lim
n→∞ v̄

k(hn;γn(hn))

= lim
n→∞

∑
ω∈Ω

∑
s∈ST−t

µn(ω) ·πnt+1(st+1|ω) · · ·πnT (sT |ω) ·vk(an(s),ω)

=
∑
ω∈Ω

∑
s∈ST−t

µ(ω) ·πt+1(st+1|ω) · · ·πT (sT |ω) ·vk(a(s),ω)

=v̄k(h;γ(h))

Based on Lemmas 3 and 4, I can conduct an induction that demonstrate Theorem
1. Suppose

1. For any j ≥ t, hj ∈Hj , Γ̄(ht) can be solved.

2. For any k and j ≥ t+ 1, V k
j is nonempty valued and has closed graph.

3. For any {hn},h ∈Ht such that µ̄(hn) = µn, µ̄(h) = µt, and µn→ µt. Suppose
there is a sequence of equilibrium paths {γ̄(hn)} that converges to a path γ(h).
Then, γ(h) ∈ Γ̄(h).

Then,

Proposition 3. For any k, {V k
t }Tk=1 have closed graph.
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Proof. For any µn → µt and vn → v such that vn ∈ V k
t (µn) for n ∈ N, there are

histories hn,h ∈Ht such that µ̄(hn) = µn and µ̄(h) = µt; also, there are equilibrium
paths γ̄(hn) such that v̄k(hn; γ̄(hn)) = vn.

As have been argued before, there is a converging subsequence {γ̄(hni)}→ γ(h).
By induction (3), γ(h) ∈ Γ̄(h), so that v̄(h; γ̄(h)) ∈ V k

t (µ). By Lemma 3,

v = lim
i→∞

vni = lim
i→∞

v̄k(hni ; γ̄(hni)) = v̄(h; γ̄(h))

Proposition 4. For any ht−1 ∈Ht−1, µ̄(ht−1) =µt−1, a path γ(ht−1) = (πt, {γ̄(ht−1,

πt, s)}s∈S) is an equilibrium path if and only if v̄t(ht−1;γ(ht−1))≥ cl(V t
t)(µt−1).

Proof. For any ht ∈Ht, there is an equilibrium path that gives sender t the minimal
payoff γ(ht), i.e., v̄t(ht;γ(ht)) = V t

t(µ̄(ht)). Let s̄(µ) be the signal inducing µ.4

By Definition 2,

cl(V t
t)(µt−1) = sup

τt∈∆(∆(Ω))
E[τ ]=µt−1

∑
µ∈supp(τt)

τt(µ) · v̄t(ht−1;γ(ht−1;πt, s̄(µ))

(Sufficiency) I want to show that a path γ(ht−1) that satisfies the condition is
an SPE path. Construct a strategy profile that prescribes γ(ht−1) on the path, and
if sender t deviates from π (τ) to π′ (τ ′), it is followed by an equilibrium path γ(ht)
for any ht ∈Ht. Therefore, the equilibrium payoff for sender t is no less than that
from any deviation.

v̄t(ht−1;γ(ht−1))≥ cl(V t
t)(µt−1)≥

∑
µ∈supp(τ ′t)

τ ′t(µ) · v̄t(ht−1;γ(ht−1;π′t, s̄(µ))

(Necessity) If v̄t(ht−1;γ(ht−1)) < cl(V t
t)(µt−1), that means there exists π′t (τ ′t)

such that

v̄t(ht−1;γ(ht−1))<
∑

µ∈supp(τ ′t)
τ ′t(µ) · v̄t(ht−1;γ(ht−1,π

′
t, s̄(µ)) (5)

Suppose any strategy profile (σt,σt+1, . . . ,ρ) that forms an equilibrium and yields
γ(ht−1). If sender t deviates to π′t, he would obtain a payoff

∑
µ∈supp(τ ′t)

τ ′t(µ)· v̄t(ht−1;π′t, s̄(µ)|σt+1, . . . ,ρ)≥
∑

µ∈supp(τ ′t)
τ ′t(µ)· v̄t(ht−1;γ(ht−1,π

′
t, s̄(µ))

4When µ is induced by two signals under a signal structure, it is equivalent to study another
signal structure that induce µ with only one signal.
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(6)

Combining Eq. (5) and (6), apparently that it is profitable for sender t to deviate
to π′. Contradiction.

Proposition 5. For any ht−1 ∈Ht−1, there exists an SPE in G(ht−1).

Proof. Let µ̄(ht−1) = µt−1. By Proposition 3, V̄ t
t is a well defined upper semi-

continuous function on ∆Ω. There is a path (πt,{γ̄(ht−1,πt, s)}s∈S), where πt in-
duces τt, such that: (1) for any µ ∈ supp(τt), γ̄(ht−1,πt, s̄(µ)) ∈ Γ̄(ht−1,πt, s̄(µ)) and
v̄t(ht−1; γ̄(ht−1;πt, s̄(µ)) = V̄ t

t (µ); (2)
∑

µ∈supp(τt)
τt(µ) · v̄t(ht−1; γ̄(ht−1;πt, s̄(µ)) = cl(V̄ t

t )(µt−1)≥ cl(V t
t)(µt−1)

By Proposition 4, (πt,{γ̄(ht−1,πt, s)}s∈S) is an equilibrium path.

Proposition 6. For any {(hn)∞n=1,h} ∈Ht−1, such that µ̄(hn) = µn, µ̄(h) = µt−1,
and µn→µt−1. Suppose there is a sequence of equilibrium paths γ̄(hn) that converges
to a path γ(h). Then γ(h) ∈ Γ̄(h).

Proof. Because πnt → πt, by Lemma 3, for any s ∈ S, µ̄(hn,πnt , s)→ µ̄(h,πt, s) and
γ̄(hn,πnt , s) ∈ Γ̄(hn,πnt , s), so γ̄(h,πt, s) ∈ Γ̄(h,πt, s) by induction (3).

By Proposition 4, v̄t(hn; γ̄n(hn))≥ cl(V t
t)(µn).

By Lemma 4 and that the concave function cl(V t
t) is continuous on ∆Ω,

v̄t(h;γ(h)) = lim
n→∞ v̄

t(hn; γ̄n(hn))

≥ lim
n→∞cl(V t

t)(µn)

= cl(V t
t)(µ)

By Proposition 4, γ(h) ∈ Γ̄(ht−1).

Finally, Propositions 3 - 6 conclude the proof of Theorem 1.
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C Section 7

C.1 Proof of Theorem 2

Suppose the two senders who have constant-sum utilities are senders i and j (i < j).
Specifically, vi + vj = c, where c ∈ R. By definition, an equilibrium in Γ(ht) that
leads to the maximum payoff for i would generate the minimum payoff for j. That
is, for any t, V̄ i

t +V j
t = c, for each t.

According to Theorem 1, V j
j−1 is bounded below by the concave closure of the

minimal function V j
j . Because V̄ i

j−1 +V j
j−1 = c, V̄ i

j−1 is bounded above by the convex
function c− cl(V j

j).
At each extreme point δ(ω) ∈∆(Ω), c−cl(V j

j)(δ(ω)) = c−V j
j(δ(ω)) = V̄ i

j (δ(ω)).
Because of convexity, c−cl(V j

j) is dominated by the hyperplane f : ∆(Ω)−→R such
that f(δ(ω)) = V̄ i

j (δ(ω)), for each ω. Mathematically, f(µ) = ∑
ω∈Ωµ(ω)V̄ i

j (δ(ω)).
Let hypo(·) denote the hypograph of a function. From above, graph(V i

j−1) ⊆
hypo(f). Furthermore, since f is linear, hypo(f) is a convex set. In addition,
graph(V i

j−2) consists of points that are convex combinations of points in graph(V i
j−1).

So graph(V i
j−2) ⊆ hypo(f). By similar arguments, graph(V i

t ) ⊆ hypo(f), for each
t≤ j−1.

Note that no matter in which period the true state is revealed, the remaining
rounds are irrelevant for the decision making. That means the value correspondences
are invariant at the extremes throughout the recursion, that is, V k

t (δ(ω)) =V k
t′ (δ(ω)),

∀k,∀t 6= t′,∀ω. As a result, I can also write f(µ) = ∑
ω∈Ωµ(ω)V̄ i

i (δ(ω)).
For any µ ∈ ∆(Ω), if v∗ ∈ V i

i−1(µ), there must be a mean-preserving spread
τ of µ, such that for each µ′ ∈ supp(τ), there is v(µ′) ∈ V i

i (µ′) that satisfies v∗ =∑
µ′∈supp(τ) τ(µ′) ·v(µ′)≤∑

µ′∈supp(τ) τ(µ′) ·f(µ′) = f(µ). The inequality derives from
that graph(V i

i )⊆ hypo(f). The last equation derives from that f is linear.
By Theorem 1, cl(V i

i)(µ)≤ v∗ ≤ f(µ). Because f(µ) can be achieved by sender
i fully revealing information and the receiver taking subsequent actions that lead
to V̄ i

i (δ(ω)), it is optimal for sender i to fully reveal information. When there is at
least one sender telling the truth, the receiver would know the true state at the end.

D Section 8

D.1 An SPE outcome that needs two players to reveal information

The state space is {ω1,ω2} and both states are equally likely. There are two senders
and one receiver. The receiver has an action space {a1, . . . ,a8}. The players’ payoffs
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Action

a1 a2 a3 a4 a5 a6 a7 a8

State
ω1 0,1,7 4,1,6 0,16,4 0,4,1 0,5,1 0,-5,-3 4,1,-8 0,1,-14

ω2 0,1,-14 4,1,-8 0,-5,-3 0,4,1 0,5,1 0,16,4 4,1,6 0,1,7

Table 3: Payoff Table

depend on the state and action, which are shown in Table 3. In each table entry,
there are payoffs for sender 1, sender 2, and the receiver, respectively. Let µt denote
the posterior probability of ω1 after period t and r(µ2) the receiver’s best responses
to µ2. When µ2 ≤ 1

7 , r(µ2) = {a1}; when 1
7 ≤ µ2≤ 2

7 , r(µ2) = {a2}; when 2
7 ≤ µ2 ≤ 3

7 ,
r(µ2) = {a3}; when 3

7 ≤ µ2 ≤ 4
7 , r(µ2) = {a4,a5}; when 4

7 ≤ µ2 ≤ 5
7 , r(µ2) = {a6};

when 5
7 ≤ µ2 ≤ 6

7 , r(µ2) = {a7}; when 6
7 ≤ µ2 ≤ 1, r(µ2) = {a8}. Based on the

receiver’s best responses, I plot sender 2’s continuation payoff correspondence, as
shown in Figure 4.

Next, I will present an SPE outcome where sender 1 gets an expected payoff
2 and then show that this equilibrium outcome cannot be achieved without two
players revealing a certain amount of information. The strategy profile that forms
the SPE path is illustrated as below.

π1(s1|ω1) = 2
7 π1(s2|ω1) = 5

7
π1(s1|ω2) = 5

7 π1(s2|ω2) = 2
7

Under π1, there are probabilities 50-50 that the signal sent is s1 or s2, where s1

updates the belief to µ1 = 2
7 and s2 to µ1 = 5

7 . For i = 1,2, let π2,i be the signal
structure sender 2 designs after seeing si. Then, π2,1 satisfies that

π2,1(ŝ1|ω1) = 1
4 π2,1(ŝ2|ω1) = 3

4
π2,1(ŝ1|ω2) = 3

5 π2,1(ŝ2|ω2) = 2
5

And π2,2 satisfies that

π2,2(ŝ1|ω1) = 2
5 π2,2(ŝ2|ω1) = 3

5
π2,2(ŝ1|ω2) = 3

4 π2,2(ŝ2|ω2) = 1
4
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Figure 4: Sender 2’s continuation payoff correspondences on µ2

Under this signal structure, the belief is updated to µ2 = 1
7 after {s1, ŝ1}, to

µ2 = 3
7 after {s1, ŝ2}, to µ2 = 4

7 after {s2, ŝ1}, and to µ2 = 6
7 after {s2, ŝ2}. Also, the

ex ante probability of sending each of these combinations of signals is 1
4 . At last,

let’s specify the receiver’s strategy. After {s1, ŝ1}, she takes a2; after {s1, ŝ2} and
{s2, ŝ1}, she takes a5; after {s2, ŝ2}, she takes a7. Therefore, the actions a2 and a7

are induced with probability 1
2 , and sender 1’s expected payoff is 2.

This strategy profile forms an SPE path. As has been discussed before, the
receiver is taking the best responses. For sender 2, as Figure 4 shows, the lower
bound for an equilibrium payoff after the first period is 3, conditional on that s1

updates his belief to 2
7 or s2 to 5

7 . Under this strategy profile, sender 2’s continuation
payoff is 3, reaching the lower bound. For sender 1, his payoff is generically 0 unless
the final belief µ2 ∈ [1

7 ,
2
7 ]∪ [5

7 ,
6
7 ]. One can check that the lower bound for sender

1’s equilibrium payoff is 0. Here his continuation payoff is 2, which means this is an
equilibrium payoff for him.

This SPE outcome has a feature that it cannot be achieved in any SPE where
only one sender reveals information on the equilibrium path. Suppose only sender
1 reveals information. Then to achieve an expected payoff higher than 2, he must
induce beliefs µ1 ∈ [1

7 ,
2
7 ]∪ [5

7 ,
6
7 ]. Yet it is nonequilibrium behavior for sender 2 to not

further reveal information and only receives payoff 1 in either case. From Figure 4,
it can be seen that 1 is lower than the lower bound 2 at any belief µ1 ∈ [1

7 ,
2
7 ]∪ [5

7 ,
6
7 ].
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On the other hand, if only sender 2 reveals information, then after period 1,
µ1 = µ0 = 1

2 . From Figure 4, the lower bound for sender 2 is 4. One typical sig-
nal structure that sender 2 can use in equilibrium with the highest probability of
inducing posteriors µ2 ∈ [1

7 ,
2
7 ]∪ [5

7 ,
6
7 ] can be described as below:

π2(ŝ1|ω1) = 1
14 π2(ŝ2|ω1) = 5

28 π2(ŝ3|ω1) = 3
4

π2(ŝ1|ω2) = 5
28 π2(ŝ2|ω2) = 1

14 π2(ŝ3|ω2) = 3
4

So after ŝ1, the posterior belief is µ2 = 2
7 , after ŝ2 µ2 = 5

7 , and after ŝ3 µ2 = 1
2 .

Let the receiver take a2, a7, and a5 after ŝ1, ŝ2, and ŝ3, respectively. In this way,
sender 2’s expected payoff is 4, reaching the lower bound for equilibrium. Also,
there is probability 1

4 that either ŝ1 or ŝ2 will be sent, so sender 1’s expected payoff
is 1. This is the highest equilibrium payoff for sender 1 if he does not reveal any
information.

Therefore, if only one sender reveals information, sender 1 cannot receive an
equilibrium payoff as high as 1.

D.2 Proof of Theorem 3

Proposition 7. Given that the receiver breaks ties in favor of later senders and
senders remain silent facing beliefs in the silent sets, the following results hold. For
any t= 1, . . . ,T −1,

1. V k
t+1 is continuous in St+1 for k > t.

2. St+1 is closed.

3. V t
t is USC in St+1.

4. There is a solution to (P), σMt , which is uninformative for any µt−1 ∈ St.

σMt (µt−1) ∈ argmax
πt∈Π

∑
µt∈supp(τt)

τt(µt|πt,µt−1) ·V t
t (µt)

s.t. supp(τt)⊆ St+1
(P)

5. supp(τt)⊆ St.

6. St ⊆ St+1.

Proof. For t= T ,
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(1) V T
T is continuous on ST .

V T
T coincides with cl(V T

T ) on ST , hence, V T
T is continuous on ST .

(2) ST is closed.

Because V T
T is continuous on ST , for any sequence {µn} ⊆ ST , s.t. µn→ µ. ∃

a subsequence {nk} s.t. ρM (µnk)→ α′ ∈ argmaxα∈∆(A)E[u(α,ω)|µ]. Because
the receiver favors sender T , V T

T (µ)≥E[vT (α′,ω)|µ] = limk→∞E[vT (ρ(µnk),ω)|µnk ]≥
cl(V T

T )(µ). Therefore, V T
T (µ) = cl(V T

T )(µ) and µ ∈ ST .

(3) V T−1
T−1 is USC in ST .

By the definition of ST , it is optimal for sender T to send null signals when
µT−1 ∈ST , which is prescribed in the construction of σMT . So V T−1

T−1 = V T−1
T on

ST . For any sequence of beliefs {µn}⊆ ST s.t. µn→ µ, ∃ a subsequence {µnk}
that converge to the limit superior, limk→∞V

T−1
T−1 (µnk) = limsupn→∞V T−1

T−1 (µn)
and that ρM (µnk)→ α′ ∈ argmaxα∈∆(A)E[u(α,ω)|µ] by the maximum theo-
rem. Because V T

T is continuous on ST , α′ is an option sender T prefers. Now
that sender T −1 has the second highest priority to be favored by the receiver,

V T−1
T−1 (µ)≥ E[vT−1(α′,ω)|µ] = lim

k→∞
V T−1
T−1 (µnk) = lim sup

n→∞
V T−1
T−1 (µn)

(4) There is a solution to (P), σMT , which is uninformative for any µT−1 ∈ ST .

There is a single sender solution when the receiver favors him in indifference.
When µT−1 ∈ST , V T

T (µT−1) = cl(V T
T (µT−1)), therefore, it is optimal for sender

T to send null signals.

(5) supp(τT )⊆ ST

If there is any µ∗ ∈ supp(τT ) such that µ∗ /∈ ST , it means that V T
T (µ∗) <

cl(V T
T )(µ∗). By the definition of concave closure, there exists an information

policy τ ′ such that E[τ ′] = µ∗ and ∑
µ∈supp(τ ′) τ

′(µ) ·V T
T (µ)> V T

T (µ∗).

Construct another information policy τ ′′ with supp(τ ′′) = supp(τT )∪supp(τ ′)\µ∗.
For any µ ∈ supp(τT ), let τ ′′(µ) = τT (µ); for any µ ∈ supp(τ ′), let τ ′′(µ) =

29



τT (µ∗)τ ′(µ). Then,
∑

µ∈supp(τ ′′)
τ ′′(µ) ·V T

T (µ)

=
∑

µ∈supp(τ)\{µ∗}
τ(µ) ·V T

T (µ) + τ(µ∗)
∑

µ∈supp(τ ′)
τ ′(µ) ·V T

T (µ)

>
∑

µ∈supp(τ)
τ(µ) ·V T

T (µ)

So it is profitable to deviate to τ ′′.

Suppose these results hold for t > i, then I will show they also hold for t= i.

(1’) V k
i+1 is continuous on Si+1, for k ≥ i+ 1.

By induction, V k
i+2 is continuous on Si+2, for k ≥ i+ 2. Plus Si+1 ⊆ Si+2, so

V k
i+1 is equal to V k

i+2 on Si+1 because of the silence of sender (i+ 1). That
means V k

i+1 is continuous on Si+1 for k ≥ i+ 2. By definition V i+1
i+1 coincides

with cl(V i+1
i+1 ) on Si+1, hence V i+1

i+1 is continuous on Si+1.

(2’) Si+1 is closed.

In the silent set Si+1, V k
i+1 = V k

T , ∀k. By (1’), V k
T in continuous on Si+1,

for k ≥ i+ 1. For any sequence {µn} ⊆ Si+1, s.t. µn→ µ, by the maximum
theorem there exists a subsequence {nk} s.t. ρM (µnk)→ α′ ∈ argmaxα∈∆(A)

E[u(α,ω)|µ] and E[vk(α′,ω)|µ] = V k
T (µ), for k ≥ i+ 1. Because sender (i+ 1)

has the priority after subsequent senders,

V i+1
i+1 (µ)≥ E[vi+1(α′,ω)|µ] = lim

k→∞
E[vi+1(ρM (µnk),ω)|µnk ]≥ cl(V i+1

i+1 )(µ)

Therefore, µ ∈ Si+1.

(3’) V i
i is USC on Si+1.

From the induction, for any µi ∈ Si, following senders stay silent, so V k
i = V k

T ,
∀k. Plus, V k

T is continuous on Si+1, for k ≥ i+ 1. For any sequence {µn} ⊆
Si+1, s.t. µn→ µ, by the maximum theorem there exists a subsequence {nk}
s.t. ρM (µnk)→ α′ ∈ argmaxα∈∆(A)E[u(α,ω)|µ] and E[vk(α′,ω)|µ] = V k

T (µ),
for k ≥ i+ 1. Because sender i has the priority after subsequent senders,

V i
i (µ)≥ E[vi(α′,ω)|µ] = lim

k→∞
V i
i (µnk) = lim sup

n→∞
V i
i (µn)
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(4’) There is a solution to (P), σMi , which is uninformative for any µi−1 ∈ Si.

If µi ∈ Si+1, by construction any sender k (k > i) would stay silent and µT =
µi ∈ Si+1. If µi 6∈ Si+1, sender (i+ 1) would spread posteriors µi+1 on Si+1

by induction, and following senders would stay silent so that µT ∈ Si+1. That
means, taking into account sender (i+ 1)’s response, sender i can not achieve
better expected payoff than the convex combination of value points in Si+1,
and it suffices to look at τi with support contained in Si+1. In addition, Si+1

is closed and V i
i is USC in Si+1, so there is an optimal strategy σMi for sender

i that solves (P’). Furthermore, when µi−1 ∈ Si, V i
i (µi−1) = cl(V i

i (µi−1)), so
it is optimal for sender i to send null signals.

(5’) supp(τi)⊆ Si

From (4’), we known that supp(τi) ⊆ Si+1 and σMi is an optimal strategy.
Then for any µ ∈ supp(τi), it must be that V i

i (µ) = cl(V i
i )(µ). (By similar

argument for (5).) By the definition of Si, µ ∈ Si.

(6’) Si ⊆ Si+1

By the definition of Si, this claim is true.

Combining results 5 and 6 of Proposition 7, we have supp(τ1)⊆S1⊆S2 · · · ⊆ ST ,
which means that the possible posteriors of the first period lie within the intersection
of all silent sets. Thus, subsequent senders will unequivocally stay silent.

D.3 Proof of Theorem 4

Lemma 5. For each hT−1 and µT−1 = µ̄(hT−1), suppose sender T uses πT to induces
τT and the equilibrium outcome is (τT ,λe). Then, for each µT ∈ supp(τT ), µT ∈ {µ∈
∆(Ω) | V̄ T

T (µ) = cl(V̄ T
T )(µ)} and E[vT (λe(µT ),ω) |µT ] = cl(V̄ T

T )(µT ).

Proof. Suppose conditional on hT−1, sender T uses πT that sends a signal s with pos-
itive probability such that µ̄(s) = µT and E[vT (λe(µT ),ω) |µT ] = v̄T (hT−1,πT , s) <
cl(V̄ T

T )(µT ). Because it is an SPE,
∑

µ∈supp(τT )
τT (µ) ·E[vT (λe(µ),ω) |µ]≥ cl(V T

T )(µT−1) = cl(V̄ T
T )(µT−1)
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Define a function f : supp(τ e)→ R such that f(µ) = E[vT (λe(µ),ω) |µ] for µ ∈
supp(τ e)\{µT} and f(µT ) = cl(V̄ T

T )(µT ). Then,
∑

µ∈supp(τT )
τT (µ) ·f(µ)>

∑
µ∈supp(τT )

τT (µ) ·E[vT (λe(µ),ω) |µ] = cl(V̄ T
T )(µT−1)

But since for each µ ∈ supp(τ e), f(µ)≤ V̄ T
T (µ) and τT is a mean-preserving spread

of µT−1,
∑

µ∈supp(τT )
τT (µ) ·λ(µ)≤ cl(V̄ T

T )(µT−1)

Contradiction. That means for each µ ∈ supp(τT ), E[vT (λe(µ),ω) |µ] = cl(V̄ T
T )(µ).

Because E[vT (λe(µ),ω) |µ] ∈ V T
T (µ) and E[vT (λe(µ),ω) |µ]≤ V̄ T

T (µ)≤ cl(V̄ T
T )(µ). It

follows that µ ∈ {µ′ ∈∆(Ω) | V̄ T
T (µ′) = cl(V̄ T

T )(µ′)}.

For each t ∈ T , define the silent set as St = {µ ∈ ∆(Ω) | V̄ t
t (µ) = cl(V̄ t

t )(µ)}.
Those are the beliefs at which sender t might choose not to reveal information on
the equilibrium path.

It is immediate that any SPE in ΓT−1(hT−1) is a silent equilibrium, given that
there is only sender T in the continuation game. Next, I move on to show that any
SPE in ΓT−2(hT−2) has an equivalent outcome to a silent equilibrium.

Suppose for a history after period T −2, hT−2 ∈HT−2, an SPE path in G(hT−2)
is (πT−1,{πT (s)}s∈ST−1 ,{α(s)}s∈ST−1×ST

). Let the equilibrium outcome of this SPE
be (τ e,λe).

Replace πT−1 with π̂T−1 that induces τ e, let sender T use uninformative signal
structures following any signal from π̂T−1, and let the receiver play the same strat-
egy α̂ conditional on the realization of the same posterior belief from the original
equilibrium path, i.e., if s∈ ST−1 induces the same posterior belief as s′ ∈ ST−1×ST ,
then α̂(s) = α(s′). Since sender T −1 does not reveal information on this path, when
denoting this path I neglect πT ; that is, the path is (π̂T−1,{α̂(s)}s∈ST−1). Further-
more, the outcome on this path is exactly the same as that under the original path,
(τ e,λe).

Then I will show that this is an equilibrium path in Γ̄(hT−2). For the receiver,
after each s ∈ ST−1, she updates her belief to the posterior of some s′ ∈ ST−1×ST ,
and she takes the same action as if she received s′ under the original strategy profile.
Since the original strategy is an equilibrium strategy, here she also maximizes her
expected payoff.
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By Lemma 5, for each µ ∈ supp(τ e), µ ∈ ST and E[vT (λe(µ),ω) |µ] = cl(V̄ T
T )(µ).

So after period T − 1, no matter which posterior µ ∈ supp(τ e) realizes, sender T
does not have an incentive to deviate to other signal structure. For sender T − 1,
on these two paths his expected payoffs are the same, which should be higher than
cl(V T−1

T−1)(µ̄(hT−2)) since the original path is an SPE path. By Theorem 1, π̂T−1 is
the signal structure on the equilibrium path.

In summary, I have shown that any SPE outcome in Γ̄(hT−2) is supported by a
silent equilibrium. Notice that the set of continuation payoffs V k

T−2 is invariant even
if we only focus on silent equilibria in Γ̄(hT−2).

Induction, 1≤ t < T −2

Let Γ̄∗(ht) be the set of SPE paths where only sender t+ 1 reveals information
on the equilibrium path. Suppose for some t∈ T , any SPE outcome in Γ̄(ht), for any
ht ∈Ht, is supported on a silent equilibrium path in Γ̄∗(ht). By similar arguments
to Lemma 5, I have the following lemma.

Lemma 6. For each ht ∈Ht and γ̄t ∈ Γ̄∗(ht), suppose under γ̄t, sender t+1 uses πt+1

to induce τt+1 and the equilibrium outcome is (τ e,λe). Then, for each µ∈ supp(τt+1),
µ ∈ St+1 and E[vt+1(λe(µ),ω) |µ] = cl(V̄ t+1

t+1 )(µ).

Proof. It can be viewed as a single-sender problem and its proof is similar to that
of Lemma 5.

Then I prove that any equilibrium outcome from Γ̄(ht−1) is equivalent to an
equilibrium outcome from Γ̄∗(ht−1).

For each γ̄t−1 ∈ Γ̄(ht−1), under γ̄t−1, πt is sender t’s signal structure. By induc-
tion, γ̄t−1 has an equivalent outcome to another SPE path γ̄∗t−1 = (πt,{γ̄∗t (s)}s∈St ,

{α∗(s)}s∈St×St+1)}, where γ̄∗t (s) ∈ Γ̄∗(ht−1,πt, s).
Now let (τ e,λe) be the equilibrium outcome of γ̄t−1 and γ̄∗t−1. Think of another

path where only sender t reveals information, γ̄′t−1 = (π′t,{γ̄′t(s)}s∈St ,{α′(s)}s∈St),
that has the following features. First, π′t induces τ e. Second, for each s ∈ St, all
subsequent senders t+ 1, . . . ,T do not reveal information on γ̄′t(s). Third, α′(s′)
induces the same action as α∗(s∗) when s′ and s∗ induce the same posterior on γ̄′t−1

and γ̄∗t−1, respectively.
Next, I prove that γ̄′t−1 ∈ Γ̄(ht−1).
Senders t+2, . . . ,T optimize because γ̄∗t (s) ∈ Γ̄∗t (ht−1,πt, s), for each s ∈ St. Un-

der γ̄∗t (s), each sender t+2, . . . ,T updates his belief to some µ∈ supp(τ e) and they all
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keep silent. Under γ̄′t−1, after period t+1, the belief is updated to some µ∈ supp(τ e),
plus the receiver reacts in the same way, so it still forms an SPE path for senders
t+ 2, . . . ,T to keep silent.

Then consider the optimization of sender t+ 1. Under γ̄′t−1, the posterior belief
after period t would be µt ∈ supp(τ e) (induced by signal st). By Lemma 6,

v̄t+1(ht−1,π
′
t, st, γ̄

′
t(st)) = E[vt+1(λe(µt),ω) |µt] = cl(V̄ t+1

t+1 )(µt)

The first equation holds because the subsequent senders after sender t+ 1 all
keep silent, inducing no change to the belief µt. Even if sender t+ 1 provides no
information, his payoff is still equal to cl(V̄ t+1

t+1 )(µt)≥ cl(V t+1
t+1)(µt).

Because γ̄t−1 is an SPE path, sender t’s payoff deriving from that path is no less
than cl(V t

t)(µ̄(ht−1)). Given that sender t’s payoff from γ̄′t−1 is equal to that from
γ̄t−1 (they have the same outcome), the necessary and sufficient condition for an
equilibrium path is satisfied according to Theorem 1.

Finally, I can conclude that γ̄′t−1 is an SPE path in Γ̄∗(ht−1) that produces the
equivalent outcome to γ̄t−1.
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